Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1842(12 Pt B): 2569-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25092170

RESUMEN

Hypercapnic acidosis activates Ca²âº channels and increases intracellular Ca²âº levels in neurons of the locus coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca²âº-activated K⁺ channels, in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca²âº current is activated by a HCO(3)(-)-sensitive pathway. The increase in HCO(3)(-) associated with hypercapnia activates HCO(3)(-)-sensitive adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels and activation of Ca²âº channels via cyclic adenosine monophosphate-activated protein kinase A. We also show the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adenosine monophosphate analogue db-cyclic adenosine monophosphate increases Ca²âºi. Disrupting this pathway by decreasing HCO(3)(-) levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in locus coeruleus neurons from older neonates to the same extent as inhibition of K⁺ channels. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Carbonatos/metabolismo , Locus Coeruleus/metabolismo , Neuronas/metabolismo , Animales , Locus Coeruleus/citología , Locus Coeruleus/enzimología , Neuronas/enzimología , Ratas , Ratas Sprague-Dawley
2.
Neuroscience ; 381: 59-78, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29698749

RESUMEN

The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K+ channels or activation of Na+ and Ca+2 channels to depolarize CO2-sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. Hypercapnic acidosis activates L-type Ca2+ channels and large conductance Ca-activated K+ (BK) channels, which function as a "brake" on the chemosensitive response of LC neurons. Our findings indicate that both Ca2+ and BK currents develop over the first 2 weeks of postnatal life in rat LC slices and that this brake pathway may cause the developmental decrease in the chemosensitive firing rate response of LC neurons to hypercapnic acidosis. Inhibition of this brake by paxilline (BK channel inhibitor) returns the magnitude of the chemosensitive firing rate response from LC neurons in rats older than P10 to high values similar to those in LC neurons from younger rats. Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Hipercapnia/fisiopatología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Locus Coeruleus/metabolismo , Neuronas/metabolismo , Fenómenos Fisiológicos Respiratorios , Animales , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar
3.
J Appl Physiol (1985) ; 112(10): 1715-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22403350

RESUMEN

Little is known about the role of Ca(2+) in central chemosensitive signaling. We use electrophysiology to examine the chemosensitive responses of tetrodotoxin (TTX)-insensitive oscillations and spikes in neurons of the locus ceruleus (LC), a chemosensitive region involved in respiratory control. We show that both TTX-insensitive spikes and oscillations in LC neurons are sensitive to L-type Ca(2+) channel inhibition and are activated by increased CO(2)/H(+). Spikes appear to arise from L-type Ca(2+) channels on the soma whereas oscillations arise from L-type Ca(2+) channels that are distal to the soma. In HEPES-buffered solution (nominal absence of CO(2)/HCO(3)(-)), acidification does not activate either oscillations or spikes. When CO(2) is increased while extracellular pH is held constant by elevated HCO(3)(-), both oscillation and spike frequency increase. Furthermore, plots of both oscillation and spike frequency vs. intracellular [HCO(3)(-)]show a strong linear correlation. Increased frequency of TTX-insensitive spikes is associated with increases in intracellular Ca(2+) concentrations. Finally, both the appearance and frequency of TTX-insensitive spikes and oscillations increase over postnatal ages day 3-16. Our data suggest that 1) L-type Ca(2+) currents in LC neurons arise from channel populations that reside in different regions of the neuron, 2) these L-type Ca(2+) currents undergo significant postnatal development, and 3) the activity of these L-type Ca(2+) currents is activated by increased CO(2) through a HCO(3)(-)-dependent mechanism. Thus the activity of L-type Ca(2+) channels is likely to play a role in the chemosensitive response of LC neurons and may underlie significant changes in LC neuron chemosensitivity during neonatal development.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Células Quimiorreceptoras/metabolismo , Activación del Canal Iónico , Locus Coeruleus/metabolismo , Neuronas/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Bicarbonatos/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/efectos de los fármacos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/crecimiento & desarrollo , Neuronas/efectos de los fármacos , Nifedipino/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Respiración , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
4.
J Biol Chem ; 280(46): 38756-66, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16157595

RESUMEN

Recent findings associate the control of stereochemistry in lipoxygenase (LOX) catalysis with a conserved active site alanine for S configuration hydroperoxide products, or a corresponding glycine for R stereoconfiguration. To further elucidate the mechanistic basis for this stereocontrol we compared the stereoselectivity of the initiating hydrogen abstraction in soybean LOX-1 and an Ala542Gly mutant that converts linoleic acid to both 13S and 9R configuration hydroperoxide products. Using 11R-(3)H- and 11S-(3)H-labeled linoleic acid substrates to examine the initial hydrogen abstraction, we found that all the primary hydroperoxide products were formed with an identical and highly stereoselective pro-S hydrogen abstraction from C-11 of the substrate (97-99% pro-S-selective). This strongly suggests that 9R and 13S oxygenations occur with the same binding orientation of substrate in the active site, and as the equivalent 9R and 13S products were formed from a bulky ester derivative (1-palmitoyl-2-linoleoylphosphatidylcholine), one can infer that the orientation is tail-first. Both the EPR spectrum and the reaction kinetics were altered by the R product-inducing Ala-Gly mutation, indicating a substantial influence of this Ala-Gly substitution extending to the environment of the active site iron. To examine also the reversed orientation of substrate binding, we studied oxygenation of the 15S-hydroperoxide of arachidonic acid by the Ala542Gly mutant soybean LOX-1. In addition to the usual 5S, 15S- and 8S, 15S-dihydroperoxides, a new product was formed and identified by high-performance liquid chromatography, UV, gas chromatography-mass spectrometry, and NMR as 9R, 15S-dihydroperoxyeicosa-5Z,7E,11Z,13E-tetraenoic acid, the R configuration "partner" of the normal 5S,15S product. This provides evidence that both tail-first and carboxylate end-first binding of substrate can be associated with S or R partnerships in product formation in the same active site.


Asunto(s)
Lipooxigenasa/química , Mutación , Alanina/química , Ácido Araquidónico/química , Sitios de Unión , Catálisis , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cartilla de ADN/química , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Ésteres , Glicina/química , Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Leucotrienos/farmacología , Ácido Linoleico/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/farmacología , Espectroscopía de Resonancia Magnética , Magnetismo , Espectrometría de Masas , Modelos Químicos , Modelos Moleculares , Mutagénesis , Oxígeno/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Programas Informáticos , Glycine max/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA