Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ergonomics ; 57(12): 1817-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25202855

RESUMEN

Large display screens are common in supervisory tasks, meaning that alerts are often perceived in peripheral vision. Five air traffic control notification designs were evaluated in their ability to capture attention during an ongoing supervisory task, as well as their impact on the primary task. A range of performance measures, eye-tracking and subjective reports showed that colour, even animated, was less effective than movement, and notifications sometimes went unnoticed. Designs that drew attention to the notified aircraft by a pulsating box, concentric circles or the opacity of the background resulted in faster perception and no missed notifications. However, the latter two designs were intrusive and impaired primary task performance, while the simpler animated box captured attention without an overhead cognitive cost. These results highlight the need for a holistic approach to evaluation, achieving a balance between the benefits for one aspect of performance against the potential costs for another. Practitioner summary: We performed a holistic examination of air traffic control notification designs regarding their ability to capture attention during an ongoing supervisory task. The combination of performance, eye-tracking and subjective measurements demonstrated that the best design achieved a balance between attentional power and the overhead cognitive cost to primary task performance.


Asunto(s)
Atención , Aviación , Aviación/instrumentación , Aviación/métodos , Presentación de Datos , Diseño de Equipo , Medidas del Movimiento Ocular , Movimientos Oculares , Humanos , Análisis y Desempeño de Tareas
2.
Sci Rep ; 10(1): 8600, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451424

RESUMEN

Stress is a word used to describe human reactions to emotionally, cognitively and physically challenging experiences. A hallmark of the stress response is the activation of the autonomic nervous system, resulting in the "fight-freeze-flight" response to a threat from a dangerous situation. Consequently, the capability to objectively assess and track a controller's stress level while dealing with air traffic control (ATC) activities would make it possible to better tailor the work shift and maintain high safety levels, as well as to preserve the operator's health. In this regard, sixteen controllers were asked to perform a realistic air traffic management (ATM) simulation during which subjective data (i.e. stress perception) and neurophysiological data (i.e. brain activity, heart rate, and galvanic skin response) were collected with the aim of accurately characterising the controller's stress level experienced in the various experimental conditions. In addition, external supervisors regularly evaluated the controllers in terms of manifested stress, safety, and efficiency throughout the ATM scenario. The results demonstrated 1) how the stressful events caused both supervisors and controllers to underestimate the experienced stress level, 2) the advantage of taking into account both cognitive and hormonal processes in order to define a reliable stress index, and 3) the importance of the points in time at which stress is measured owing to the potential transient effect once the stressful events have ceased.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 851-854, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018118

RESUMEN

Air Traffic Control (ATC) has been classified as the fourth most stressful job. In this regard, sixteen controllers were asked to perform ecological ATC simulation during which behavioral (Radio Communications with pilots - RCs), subjective (stress perception) and neurophysiological signals (brain activity and skin conductance - SC) were collected. All the considered parameters reported significant changes under high stress conditions. In particular, the theta, alpha, and beta brain rhythms increased significantly (all p<0.05) all over the brain areas, and both the SC components exhibited higher values (p<0.01). Additionally, the number of speech under high stress decreased significantly (p<10-4) while both the mean and median value of the F0 component of the RC increased (p<0.01). The results can be employed to objectively measure and track the controller's stress level while dealing with ATC activities to better tailoring the workshift and maintaining high safety levels.


Asunto(s)
Aviación , Neurofisiología , Ritmo beta , Encéfalo , Humanos , Habla
4.
Front Hum Neurosci ; 13: 303, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551735

RESUMEN

New solutions in operational environments are often, among objective measurements, evaluated by using subjective assessment and judgment from experts. Anyhow, it has been demonstrated that subjective measures suffer from poor resolution due to a high intra and inter-operator variability. Also, performance measures, if available, could provide just partial information, since an operator could achieve the same performance but experiencing a different workload. In this study, we aimed to demonstrate: (i) the higher resolution of neurophysiological measures in comparison to subjective ones; and (ii) how the simultaneous employment of neurophysiological measures and behavioral ones could allow a holistic assessment of operational tools. In this regard, we tested the effectiveness of an electroencephalography (EEG)-based neurophysiological index (WEEG index) in comparing two different solutions (i.e., Normal and Augmented) in terms of experienced workload. In this regard, 16 professional air traffic controllers (ATCOs) have been asked to perform two operational scenarios. Galvanic Skin Response (GSR) has also been recorded to evaluate the level of arousal (i.e., operator involvement) during the two scenarios execution. NASA-TLX questionnaire has been used to evaluate the perceived workload, and an expert was asked to assess performance achieved by the ATCOs. Finally, reaction times on specific operational events relevant for the assessment of the two solutions, have also been collected. Results highlighted that the Augmented solution induced a local increase in subjects performance (Reaction times). At the same time, this solution induced an increase in the workload experienced by the participants (WEEG). Anyhow, this increase is still acceptable, since it did not negatively impact the performance and has to be intended only as a consequence of the higher engagement of the ATCOs. This behavioral effect is totally in line with physiological results obtained in terms of arousal (GSR), that increased during the scenario with augmentation. Subjective measures (NASA-TLX) did not highlight any significant variation in perceived workload. These results suggest that neurophysiological measure provide additional information than behavioral and subjective ones, even at a level of few seconds, and its employment during the pre-operational activities (e.g., design process) could allow a more holistic and accurate evaluation of new solutions.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4619-4622, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441381

RESUMEN

This study aims at investigating the possibility to employ neurophysiological measures to assess the humanmachine interaction effectiveness. Such a measure can be used to compare new technologies or solutions, with the final purpose to enhance operator's experience and increase safety. In the present work, two different interaction modalities (Normal and Augmented) related to Air Traffic Management field have been compared, by involving 10 professional air traffic controllers in a control tower simulated environment. Experimental task consisted in locating aircrafts in different airspace positions by using the sense of hearing. In one modality (i.e. "Normal"), all the sound sources (aircrafts) had the same amplification factor. In the "Augmented" modality, the amplification factor of the sound sources located along the participant head sagittal axis was increased, while the intensity of sound sources located outside this axis decreased. In other words, when the user oriented his head toward the aircraft position, the related sound was amplified. Performance data, subjective questionnaires (i.e. NASA-TLX) and neurophysiological measures (i.e. EEG-based) related to the experienced workload have been collected. Results showed higher significant performance achieved by the users during the "Augmented" modality with respect to the "Normal" one, supported by a significant decreasing in experienced workload, evaluated by using EEG-based index. In addition, Performance and EEG-based workload index showed a significant negative correlation. On the contrary, subjective workload analysis did not show any significant trend. This result is a demonstration of the higher effectiveness of neurophysiological measures with respect to subjective ones for Human-Computer Interaction assessment.


Asunto(s)
Aeronaves , Sistemas Hombre-Máquina , Localización de Sonidos , Análisis y Desempeño de Tareas , Carga de Trabajo , Percepción Auditiva , Electroencefalografía , Audición , Humanos , Monitorización Neurofisiológica , Ocupaciones
6.
Sci Rep ; 7(1): 547, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373684

RESUMEN

Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic settings.


Asunto(s)
Aviación , Control de la Conducta , Encéfalo/fisiología , Cognición , Electroencefalografía , Ocupaciones , Análisis y Desempeño de Tareas , Análisis de Varianza , Nivel de Alerta , Humanos , Conocimiento , Aprendizaje Automático , Solución de Problemas
7.
IEEE Rev Biomed Eng ; 10: 250-263, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28422665

RESUMEN

This paper provides a focused and organized review of the research progress on neurophysiological indicators, also called "neurometrics," to show how they can effectively address some of the most important human factors (HFs) needs in the air traffic management (ATM) field. In order to better understand and highlight available opportunities of such neuroscientific applications, state of the art on the most involved HFs and related cognitive processes (e.g., mental workload and cognitive training) are presented together with examples of possible applications in current and future ATM scenarios. Furthermore, this paper will discuss the potential enhancements that further research and development activities could bring to the efficiency and safety of the ATM service.


Asunto(s)
Aviación , Neurofisiología , Electroencefalografía , Humanos , Carga de Trabajo
8.
Front Hum Neurosci ; 10: 344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458362

RESUMEN

The current study examines the role of cognitive and perceptual loads in inattentional deafness (the failure to perceive an auditory stimulus) and the possibility to predict this phenomenon with ocular measurements. Twenty participants performed Air Traffic Control (ATC) scenarios-in the Laby ATC-like microworld-guiding one (low cognitive load) or two (high cognitive load) aircraft while responding to visual notifications related to 7 (low perceptual load) or 21 (high perceptual load) peripheral aircraft. At the same time, participants were played standard tones which they had to ignore (probability = 0.80), or deviant tones (probability = 0.20) which they had to report. Behavioral results showed that 28.76% of alarms were not reported in the low cognitive load condition and up to 46.21% in the high cognitive load condition. On the contrary, perceptual load had no impact on the inattentional deafness rate. Finally, the mean pupil diameter of the fixations that preceded the target tones was significantly lower in the trials in which the participants did not report the tones, likely showing a momentary lapse of sustained attention, which in turn was associated to the occurrence of inattentional deafness.

9.
Front Hum Neurosci ; 10: 539, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833542

RESUMEN

Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (École Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 7242-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737963

RESUMEN

Machine-learning approaches for mental workload (MW) estimation by using the user brain activity went through a rapid expansion in the last decades. In fact, these techniques allow now to measure the MW with a high time resolution (e.g. few seconds). Despite such advancements, one of the outstanding problems of these techniques regards their ability to maintain a high reliability over time (e.g. high accuracy of classification even across consecutive days) without performing any recalibration procedure. Such characteristic will be highly desirable in real world applications, in which human operators could use such approach without undergo a daily training of the device. In this work, we reported that if a simple classifier is calibrated by using a low number of brain spectral features, between those ones strictly related to the MW (i.e. Frontal and Occipital Theta and Parietal Alpha rhythms), those features will make the classifier performance stable over time. In other words, the discrimination accuracy achieved by the classifier will not degrade significantly across different days (i.e. until one week). The methodology has been tested on twelve Air Traffic Controls (ATCOs) trainees while performing different Air Traffic Management (ATM) scenarios under three different difficulty levels.


Asunto(s)
Aviación , Encéfalo/fisiología , Electroencefalografía , Análisis y Desempeño de Tareas , Carga de Trabajo , Adulto , Humanos , Aprendizaje Automático , Reproducibilidad de los Resultados , Recursos Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA