Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Geophys Res Lett ; 48(15)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34690382

RESUMEN

We report for the first time the day-to-day variation of the longitudinal structure in height of the F2 layer (hmF2) in the equatorial ionosphere using multi-satellite observations of electron density profiles by the Constellation Observing System for Meteorology, Ionosphere and Climate-2 (COSMIC-2). These observations reveal a ~3-day modulation of the hmF2 wavenumber-4 structure viewed in a fixed local time frame during January 30-February 14, 2021. Simultaneously, ~3-day planetary wave activity is discerned from zonal wind observations at ~100 km by the Ionospheric Connection Explorer (ICON) Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI). This signature is not observed at ~180-250 km altitudes, suggesting the dissipation of this wave below the F-region. We propose that the 3-day variation identified in h mF2 is likely caused by the planetary wave-tide interaction through the E-region dynamo.

2.
Adv Space Res ; 64(10): 1841-1853, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33867620

RESUMEN

Large scale waves, such as the atmospheric tides and ultra-fast Kelvin waves (UFKW), have direct effects on the neutral wind and temperature fields of the ionosphere-thermosphere (I-T) system. In this study we examine the response of the I-T system to the atmospheric tides, one UFKW, and the secondary waves generated from their interactions using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM). We find that forcing an UFKW at the lower boundary of the TIEGCM is all that is required for it to setup in the model. We see variations around 10% in the zonal winds that lead to similar variations in the total electron content (TEC) depending on the phase of the UFKW. From these simulations, we expect the Ionospheric Connection Explorer (ICON) mission will be able to fully capture these wave interactions by observing winds and temperatures at the mesopause and above.

3.
Space Sci Rev ; 219(3): 24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007703

RESUMEN

We present in-flight performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field ( 17 ∘ × 12 ∘ ) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Oii emission lines at 61.6 nmand 83.4 nm. In flight calibration and performance measurement has shown that the instrument has met all of the science performance requirements. We discuss the observed and expected changes in the instrument performance due to microchannel plate charge depletion, and how these changes were tracked over the first two years of flight. This paper shows raw data products from this instrument. A parallel paper (Stephan et al. in Space Sci. Rev. 218:63, 2022) in this volume discusses the use of these raw products to determine O+ density profiles versus altitude.

4.
Space Sci Rev ; 219(3): 27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038438

RESUMEN

The design, principles of operation, calibration, and data analysis approaches of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the NASA Ionospheric Connection (ICON) satellite have been documented prior to the ICON launch. Here we update and expand on the MIGHTI wind data analysis and discuss the on-orbit instrument performance. In particular, we show typical raw data and we describe key processing steps, including the correction of a "signal-intensity dependent phase shift," which is necessitated by unexpected detector behavior. We describe a new zero-wind calibration approach that is preferred over the originally planned approach due to its higher precision. Similar to the original approach, the new approach is independent of any a priori data. A detailed update on the wind uncertainties is provided and compared to the mission requirements, showing that MIGHTI has met the ICON mission requirements. While MIGHTI observations are not required to produce absolute airglow brightness profiles, we describe a relative brightness profile product, which is included in the published data. We briefly review the spatial resolution of the MIGHTI wind data in addition to the data coverage and data gaps that occurred during the nominal mission. Finally, we include comparisons of the MIGHTI wind data with ground-based Fabry-Perot interferometer observations and meteor radar observations, updating previous studies with more recent data, again showing good agreement. The data processing steps covered in this work and all the derived wind data correspond to the MIGHTI data release Version 5 (v05).

5.
Space Sci Rev ; 219(5): 41, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469439

RESUMEN

The two-year prime mission of the NASA Ionospheric Connection Explorer (ICON) is complete. The baseline operational and scientific objectives have been met and exceeded, as detailed in this report. In October of 2019, ICON was launched into an orbit that provides its instruments the capability to deliver near-continuous measurements of the densest plasma in Earth's space environment. Through collection of a key set of in-situ and remote sensing measurements that are, by virtue of a detailed mission design, uniquely synergistic, ICON enables completely new investigations of the mechanisms that control the behavior of the ionosphere-thermosphere system under both geomagnetically quiet and active conditions. In a two-year period that included a deep solar minimum, ICON has elucidated a number of remarkable effects in the ionosphere attributable to energetic inputs from the lower and middle atmosphere, and shown how these are transmitted from the edge of space to the peak of plasma density above. The observatory operated in a period of low activity for 2 years and then for a year with increasing solar activity, observing the changing balance of the impacts of lower and upper atmospheric drivers on the ionosphere.

6.
J Geophys Res Space Phys ; 127(8): e2022JA030592, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36247324

RESUMEN

Since the earliest space-based observations of Earth's atmosphere, ultraviolet (UV) airglow has proven a useful resource for remote sensing of the ionosphere and thermosphere. The NASA Ionospheric Connection Explorer (ICON) spacecraft, whose mission is to explore the connections between ionosphere and thermosphere utilizes UV airglow in the typical way: an extreme-UV (EUV) spectrometer uses dayglow between 54 and 88 nm to measure the density of O+, and a far-UV spectrograph uses the O 135.6 nm doublet and N2 Lyman-Birge-Hopfield band dayglow to measure the column ratio of O to N2 in the upper thermosphere. Two EUV emission features, O+ 61.6 and 83.4 nm, are used for the O+ retrieval; however, many other features are captured along the EUV instrument's spectral dimension. In this study, we examine the other dayglow features observed by ICON EUV and demonstrate that it measures a nitrogen feature around 87.8 nm which can be used to observe the neutral thermosphere.

7.
J Geophys Res Space Phys ; 127(6): e2022JA030527, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35864906

RESUMEN

Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere-thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global-scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption-induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14-17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X-pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long-lasting quasi-periodic fluctuations between ±200 m/s for 7-8 hr after the passage of volcano-induced Lamb waves. The EIA suppression and X-pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.

8.
J Geophys Res Space Phys ; 126(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34650898

RESUMEN

Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber s = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms-1) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms-1 wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.

9.
J Geophys Res Space Phys ; 126(2)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33828935

RESUMEN

Observations of the nighttime thermospheric wind from two ground-based Fabry-Perot Interferometers are compared to the level 2.1 and 2.2 data products from the Michelson Interferometer Global High-resolution Thermospheric Imaging (MIGHTI) onboard National Aeronautics and Space Administration's Ionospheric Connection Explorer to assess and validate the methodology used to generate measurements of neutral thermospheric winds observed by MIGHTI. We find generally good agreement between observations approximately coincident in space and time with mean differences less than 11 m/s in magnitude and standard deviations of about 20-35 m/s. These results indicate that the independent calculations of the zero-wind reference used by the different instruments do not contain strong systematic or physical biases, even though the observations were acquired during solar minimum conditions when the measured airglow intensity is weak. We argue that the slight differences in the estimated wind quantities between the two instrument types can be attributed to gradients in the airglow and thermospheric wind fields and the differing viewing geometries used by the instruments.

10.
Nat Geosci ; 14: 893-898, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003329

RESUMEN

Earth's equatorial ionosphere exhibits substantial and unpredictable day-to-day variations in density and morphology. This presents challenges in preparing for adverse impacts on geopositioning systems and radio communications even 24 hours in advance. The variability is now theoretically understood as a manifestation of thermospheric weather, where winds in the upper atmosphere respond strongly to a spectrum of atmospheric waves that propagate into space from the lower and middle atmosphere. First-principles simulations predict related, large changes in the ionosphere, primarily through modification of wind-driven electromotive forces: the wind-driven dynamo. Here we show the first direct evidence of the action of a wind dynamo in space, using the coordinated, space-based observations of winds and plasma motion made by the National Aeronautics and Space Administration Ionospheric Connection Explorer. A clear relationship is found between vertical plasma velocities measured at the magnetic equator near 600 km and the thermospheric winds much farther below. Significant correlations are found between the plasma and wind velocities during several successive precession cycles of the Ionospheric Connection Explorer's orbit. Prediction of thermospheric winds in the 100-150 km altitude range emerges as the key to improved prediction of Earth's plasma environment.

11.
J Geophys Res Space Phys ; 126(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35070616

RESUMEN

A quasi-2-day wave (Q2DW) event during January-February, 2020, is investigated in terms of its propagation from 96 to 250 km as a function of latitude (10°S to 30°N), its nonlinear interactions with migrating tides to produce 16 and 9.6-h secondary waves (SWs), and the plasma drift and density perturbations that it produces in the topside F-region (590-607 km) between magnetic latitudes 18°S and 18°N. This is accomplished through analysis of coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and ion densities, and wind measurements from four low-latitude (±15°) specular meteor radars (SMRs). The Q2DW westward-propagating components that existed during this period consist of zonal wavenumbers s = 2 and s = 3, that is, Q2DW+2 and Q2DW+3 (e.g., He, Chau et al., 2021, https://doi.org/10.1029/93jd00380). SWs in the ICON measurements are inferred from Q2DW+2 and Q2DW+3 characteristics derived from traditional longitude-UT fits that potentially contain aliasing contributions from SWs ("apparent" Q2DWs), from fits to space-based zonal wavenumbers that each reflect the aggregate signature of either Q2DW+2 or Q2DW+3 and its SWs combined ("effective" Q2DWs), and based on information contained in published numerical simulations. The total Q2DW ionospheric responses consists of F-region field-aligned and meridional drifts of order ±25 ms-1 and ±5-7 ms-1, respectively, and total ion density perturbations of order (±10%-25%). It is shown that the SWs can sometimes make substantial contributions to the Q2DW winds, drifts, and plasma densities.

12.
J Geophys Res Space Phys ; 126(9)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34650899

RESUMEN

In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N2 is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth's limb allows for the total column of O and N2 in the ionosphere to be determined. While these observations have enabled many previous studies, determining the impact of non-migrating tides on thermospheric composition has proved difficult, owing to a small contamination of the signal by recombination of ionospheric O+. New ICON observations of far UV are presented here, and their general characteristics are shown. Using these, along with other observations and a global circulation model we show that during the morning hours and at latitudes away from the peak of the equatorial ionospheric anomaly, the impact of non-migrating tides on thermospheric composition can be observed. During March - April 2020, the column O/N2 ratio was seen to vary by 3 - 4 % of the zonal mean. By comparing the amplitude of the variation observed with that in the model, both the utility of these observations and a pathway to enable future studies is shown.

13.
J Geophys Res Space Phys ; 126(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33868889

RESUMEN

We compare coincident thermospheric neutral wind observations made by the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) spacecraft, and four ground-based specular meteor radars (SMRs). Using the green-line MIGHTI channel, we analyze 1158 coincidences between Dec 2019 and May 2020 in the altitude range from 94 to 104 km where the observations overlap. We find that the two datasets are strongly correlated (r = 0.82) with a small mean difference (4.5 m/s). Although this agreement is good, an analysis of known error sources (e.g., shot noise, calibration errors, and analysis assumptions) can only account for about a quarter of the disagreement variance. The unexplained variance is 27.8% of the total signal variance and could be caused by unknown errors. However, based on an analysis of the spatial and caused by temporal variability of the wind on scales ≲70 min. The observed magnitudes agree well during temporal averaging of the two measurement modalities, we suggest that some of the disagreement is likely the night, but during the day, MIGHTI observes 16%-25% faster winds than the SMRs. This remains unresolved but is similar in certain ways to previous SMR-satellite comparisons.

14.
Prog Earth Planet Sci ; 7(1): 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32626648

RESUMEN

Retrieval of the properties of the middle and upper atmosphere can be performed using several different interferometric and photometric methods. The emission-shape and Doppler shift of both atomic and molecular emissions can be observed from the ground and space to provide temperature and bulk velocity. These instantaneous measurements can be combined over successive times/locations along an orbit track, or successive universal/local times from a ground station to quantify the motion and temperature of the atmosphere needed to identify atmospheric tides. In this report, we explore how different combinations of space-based wind and temperature measurements affect the retrieval of atmospheric tides, a ubiquitous property of planetary atmospheres. We explore several scenarios informed by the use of a tidally forced atmospheric circulation model, an empirically based emissions reference, and a low-earth orbit satellite observation geometry based on the ICON mission design. This capability provides a necessary tool for design of an optimal mission concept for retrieval of atmospheric tides from ICON remote-sensing observations. Here it is used to investigate scenarios of limited data availability and the effects of rapid changes in the total wave spectrum on the retrieval of the correct tidal spectrum. An approach such as that described here could be used in the design of future missions, such as the NASA DYNAMIC mission (National Research Council, Solar and space physics: a science for a technological society, 2013).

15.
Earth Space Sci ; 7(10): e2020EA001164, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134433

RESUMEN

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric Connection Explorer (ICON) mission is designed to measure the neutral wind and temperature between 90 and ∼300 km altitude. Using the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy technique, observations from MIGHTI can be used to derive thermospheric winds by measuring Doppler shifts of the atomic oxygen red line (630.0 nm) and green line (557.7 nm). Harding et al. (2017, https://doi.org/10.1007/s11214-017-0359-3) (Harding17) describe the wind retrieval algorithm in detail and point out the large uncertainties that result near the solar terminators and equatorial arcs, regions of large spatial gradients in airglow volume emission rates (VER). The uncertainties originate from the assumption of a constant VER at every given altitude, resulting in errors where the assumption is not valid when limb sounders, such as MIGHTI, observe regions with significant VER gradients. In this work, we introduce a new wind retrieval algorithm (Wu20) with the ability to account for VER that is asymmetric along the line of sight with respect to the tangent point. Using the predicted ICON orbit and simulated global VER variation, the greatest impact of the symmetric airglow assumption to the ICON vector wind product is found within 30° from the terminator when the spacecraft is in the dayside, causing an error of at least 10 m/s. The new algorithm developed in this study reduces the error near the terminator by a factor of 10. Although Wu20 improves the accuracy of the retrievals, it loses precision by 75% compared to Harding17.

16.
Space Sci Rev ; 214(42)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30026635

RESUMEN

The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as ΣO/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure ΣO/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.

17.
Space Sci Rev ; 2142018.
Artículo en Inglés | MEDLINE | ID: mdl-33795893

RESUMEN

The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

18.
Space Sci Rev ; 214(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-30166692

RESUMEN

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is a satellite experiment scheduled to launch on NASA's Ionospheric Connection Explorer (ICON) in 2017. MIGHTI is designed to measure horizontal neutral winds and neutral temperatures in the terrestrial thermosphere. Temperatures will be inferred by imaging the molecular oxygen Atmospheric band (A band) on the limb in the lower thermosphere. MIGHTI will measure the spectral shape of the A band using discrete wavelength channels to infer the ambient temperature from the rotational envelope of the band. Here we present simulated temperature retrievals based on the as-built characteristics of the instrument and the expected emission rate profile of the A band for typical daytime and nighttime conditions. We find that for a spherically symmetric atmosphere, the measurement precision is 1 K between 90-105 km during the daytime whereas during the nighttime it increases from 1 K at 90 km to 3 K at 105 km. We also find that the accuracy is 2 K to 11 K for the same altitudes. The expected MIGHTI temperature precision is within the measurement requirements for the ICON mission.

19.
Space Sci Rev ; 212(1-2): 645-654, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30034035

RESUMEN

The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated O+ density profile from 150-450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.

20.
Space Sci Rev ; 212(1-2): 585-600, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30034033

RESUMEN

We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA