Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Faraday Discuss ; 200: 143-164, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28581016

RESUMEN

When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to 'pure' SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Aerosoles/síntesis química , Aerosoles/química , Aerosoles/metabolismo , Gases/química , Estructura Molecular , Tamaño de la Partícula
2.
Phys Chem Chem Phys ; 19(9): 6497-6507, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28197606

RESUMEN

Chemical transformations and aging of secondary organic aerosol (SOA) particles can alter their physical and chemical properties, including particle morphology. Ammonia, one of the common atmospheric reactive constituents, can react with SOA particles, changing their properties and behavior. At low relative humidity, NH3 uptake by α-pinene SOA particles appears to be limited to the particle surface, which suggests that the reacted particles might not be homogeneous and have complex morphology. Here, we present a study aimed at detailed characterization of the effect of ammonia on the composition, density, morphology, shape, and evaporation kinetics of α-pinene SOA particles. We find that a small amount of NH3 diffuses and reacts throughout the particle bulk, while most of the ammoniated products result from the reaction of NH3 with carboxylic acids on the particle surface, leading to a slight increase in particle size. We show that the reaction products form a solid semi-volatile coating that is a few nanometers thick. This solid coating prevents coagulating particles from coalescing for over two days. However, when the gas phase is diluted this semi-volatile coating evaporates in minutes, which is ensued by rapid coalescence. The ammoniated products in the particle bulk affect particles' evaporation kinetics, more so for the smaller particles that contain a higher fraction of ammoniated products.

3.
Environ Sci Technol ; 50(11): 5580-8, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27176464

RESUMEN

Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-ß-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size.


Asunto(s)
Atmósfera/química , Humedad , Ácidos/química , Aerosoles , Compuestos Epoxi/química
4.
Environ Sci Technol ; 49(1): 243-9, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25494490

RESUMEN

Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.


Asunto(s)
Aerosoles/química , Ciclohexenos/química , Monoterpenos/química , Terpenos/química , Contaminantes Atmosféricos/química , Monoterpenos Bicíclicos , Humedad , Cinética , Laboratorios , Limoneno , Volatilización
5.
Proc Natl Acad Sci U S A ; 109(8): 2836-41, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22308444

RESUMEN

Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.


Asunto(s)
Aerosoles/análisis , Atmósfera/química , Compuestos Orgánicos/análisis , Monoterpenos Bicíclicos , Monoterpenos/análisis , Nitratos/análisis , Óxido Nitroso/análisis , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
6.
Proc Natl Acad Sci U S A ; 108(6): 2190-5, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262848

RESUMEN

Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.


Asunto(s)
Modelos Químicos , Monoterpenos/química , Transición de Fase , Aerosoles , Monoterpenos Bicíclicos , Calor , Cinética , Monoterpenos/síntesis química
7.
Phys Chem Chem Phys ; 15(8): 2983-91, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23340901

RESUMEN

Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles depend strongly on SOA phase. Recent experimental evidence from both our group and several others indicates that, in contrast to common models' assumptions, SOA constituents do not form a low-viscosity, well-mixed solution, yielding instead a semisolid phase with high, but undetermined, viscosity. We find that when SOA particles are made in the presence of vapors of semi-volatile hydrophobic compounds, such molecules become trapped in the particles' interiors and their subsequent evaporation rates and thus their rates of diffusion through the SOA can be directly obtained. Using pyrene as the tracer molecule and SOA derived from α-pinene ozonolysis, we find that it takes ~24 hours for half the pyrene to evaporate. Based on the observed pyrene evaporation kinetics we estimate a diffusivity of 2.5 × 10(-21) m(2) s(-1) for pyrene in SOA. Similar measurements on SOA doped with fluoranthene and phenanthrene yield diffusivities comparable to that of pyrene. Assuming a Stokes-Einstein relation, an approximate viscosity of 10(8) Pa s can be calculated for this SOA. Such a high viscosity is characteristic of tars and is consistent with published measurements of SOA particle bounce, evaporation kinetics, and the stability of two reverse-layered morphologies. We show that a viscosity of 10(8) Pa s implies coalescence times of minutes, consistent with the findings that SOA particles formed by coagulation are spherical on the relevant experimental timescales. Measurements on aged SOA particles doped with pyrene yield an estimated diffusivity ~3 times smaller, indicating that hardening occurs with time, which is consistent with the increase in SOA oligomer content, decrease in water uptake, and decrease in evaporation rates previously observed with aging.

8.
Proc Natl Acad Sci U S A ; 107(15): 6658-63, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20194795

RESUMEN

Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of alpha-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized alpha-pinene products on size-selected DOP particles and by condensation of DOP on size-selected alpha-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is approximately 4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present.


Asunto(s)
Aerosoles , Química Orgánica/métodos , Ozono/química , Adsorción , Contaminantes Atmosféricos/química , Atmósfera/química , Monoterpenos Bicíclicos , Dietilhexil Ftalato/química , Gases , Rayos Láser , Espectrometría de Masas/métodos , Monoterpenos/química , Compuestos Orgánicos/química , Tamaño de la Partícula , Cloruro de Sodio/química , Rayos Ultravioleta
9.
Anal Chem ; 84(3): 1459-65, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22220641

RESUMEN

Particle shape is an important attribute in determining particle properties and behavior, but it is difficult to control and characterize. We present a new portable system that offers, for the first time, the ability to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in situ, and in real-time. The system uses an aerosol particle mass analyzer (APM) to classify particles of one mass-to-charge ratio, transporting them to a differential mobility analyzer (DMA) that is tuned to select particles of one charge, mobility diameter, and for particles with one density, one shape. These uniform particles are then ready for use and/or characterization by any application or analytical tool. We combine the APM and DMA with our single-particle mass spectrometer, SPLAT II, to form the ADS and demonstrate its utility to measure individual particle compositions, vacuum aerodynamic diameters, and particle DSFs in two flow regimes for each selected shape. We applied the ADS to the characterization of aspherical ammonium sulfate and NaCl particles, demonstrating that both have a wide distribution of particle shapes with DSFs from approximately 1 to 1.5.

10.
Environ Sci Technol ; 46(22): 12459-66, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23098132

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), known for their harmful health effects, undergo long-range transport (LRT) when adsorbed on and/or absorbed in atmospheric particles. The association between atmospheric particles, PAHs, and their LRT has been the subject of many studies yet remains poorly understood. Current models assume PAHs instantaneously attain reversible gas-particle equilibrium. In this paradigm, as gas-phase PAH concentrations are depleted due to oxidation and dilution during LRT, particle-bound PAHs rapidly evaporate to re-establish equilibrium leading to severe underpredictions of LRT potential of particle-bound PAHs. Here we present a new, experimentally based picture in which PAHs trapped inside highly viscous semisolid secondary organic aerosol (SOA) particles, during particle formation, are prevented from evaporation and shielded from oxidation. In contrast, surface-adsorbed PAHs rapidly evaporate leaving no trace. We find synergetic effects between hydrophobic organics and SOA - the presence of hydrophobic organics inside SOA particles drastically slows SOA evaporation to the point that it can almost be ignored, and the highly viscous SOA prevents PAH evaporation ensuring efficient LRT. The data show the assumptions of instantaneous reversible gas-particle equilibrium for PAHs and SOA are fundamentally flawed, providing an explanation for the persistent discrepancy between observed and predicted particle-bound PAHs.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Hidrocarburos Policíclicos Aromáticos/química , Adsorción , Gases/química , Espectrometría de Masas , Modelos Químicos , Oxidación-Reducción , Volatilización
11.
Anal Chem ; 82(19): 7943-51, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20718425

RESUMEN

The aerosol indirect effect remains the most uncertain aspect of climate change modeling, calling for characterization of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of our single particle mass spectrometer (SPLAT II) operated in dual data acquisition mode to simultaneously measure particle number concentrations, density, asphericity, and individual particle size and quantitative composition, with temporal resolution better than 60 s, thus yielding all the required properties to definitively characterize the aerosol-cloud interaction in this exemplary case. We find that particles are composed of oxygenated organics, many mixed with sulfates, biomass burning particles, some with sulfates, and processed sea-salt. Cloud residuals are found to contain more sulfates than background particles, explaining their higher efficiency to serve as cloud condensation nuclei (CCN). Additionally, CCN sulfate content increased with time due to in-cloud droplet processing. A comparison between the size distributions of background, CCN, and interstitial particles shows that while nearly all CCN particles are larger than 100 nm, over 80% of interstitial particles are smaller than 100 nm. We conclude that for this cloud, particle size is the controlling factor on aerosol activation into cloud-droplets, with higher sulfate content playing a secondary role.

12.
J Am Soc Mass Spectrom ; 26(2): 257-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25563475

RESUMEN

Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

13.
IEEE Trans Vis Comput Graph ; 20(3): 351-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24434217

RESUMEN

Although the euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging intercluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multidimensional scaling (MDS) where one can often observe nonintuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly in high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our biscale framework distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate euclidean distance.

14.
Environ Sci Technol ; 44(3): 1056-61, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20058917

RESUMEN

While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and FTIR spectroscopy on particles impacted on ZnSe windows were applied to NH(4)NO(3), NaNO(3), and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO(3) radical reactions at 22 degrees C and 1 atm in air with alpha- and beta-pinene, 3-carene, limonene, and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the alpha-pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [C(x)H(y)N(z)O(a)](+) were identified using HR-ToF-AMS. The NO(+)/NO(2)(+) ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the alpha- and beta-pinene, 3-carene, and limonene reactions, approximately 5 for the isoprene reaction, 2.4 for NH(4)NO(3) and 80 for NaNO(3). The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO(2)/C-H ratios measured using FTIR. FTIR has the advantage that it provides identification and quantification of functional groups. The NO(+)/NO(2)(+) ratio from HR-ToF-AMS can indicate organic nitrates if they are present at more than 15-60% of the inorganic nitrate, depending on whether the latter is NH(4)NO(3) or NaNO(3). However, unique identification of specific organic nitrates is not possible with either method.


Asunto(s)
Espectrometría de Masas , Nitratos/química , Material Particulado/química , Espectroscopía Infrarroja por Transformada de Fourier , Monitoreo del Ambiente/métodos , Nitrógeno/química
15.
J Phys Chem A ; 112(4): 669-77, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18173252

RESUMEN

A significant fraction of atmospheric particles are composed of inorganic substances that are mixed or coated with organic compounds. The properties and behavior of these particles depend on the internal composition and arrangement of the specific constituents in each particle. It is important to know which constituent is on the surface and whether it covers the particle surface partially or entirely. We demonstrate here an instrument consisting of an ultrasensitive single-particle mass spectrometer coupled with a differential mobility analyzer to quantitatively measure in real time individual particle composition, size, density, and shape and to determine which substance is on the surface and whether it entirely covers the particle. For this study, we use NaCl particles completely coated with liquid dioctyl phthalate to generate spherical particles, and NaCl particles partially coated with pyrene, a solid poly aromatic hydrocarbon, to produce aspherical particles with pyrene nodules and an exposed NaCl core. We show that the behavior of the mass spectral intensities as a function of laser fluence yields information that can be used to determine the morphological distribution of individual particle constituents.


Asunto(s)
Espectrometría de Masas/métodos , Cloruro de Sodio/química , Dietilhexil Ftalato/química , Rayos Láser , Espectrometría de Masas/instrumentación , Tamaño de la Partícula , Pirenos/química
16.
Anal Chem ; 80(5): 1401-7, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18254610

RESUMEN

The interaction between atmospheric particles and water vapor impacts directly and significantly the effect that these particles exert on the atmosphere. The hygroscopicity of individual particles, which is a quantitative measure of their response to changes in relative humidity, is related to their internal compositions. To properly include atmospheric aerosols in any model requires knowledge of the relationship between particle size, composition, and hygroscopicity. Here we demonstrate the capability to conduct in real time the simultaneous measurements of individual ambient particle hygroscopic growth factors, densities, and compositions using a humidified tandem differential mobility analyzer that is coupled to an ultrasensitive single-particle mass spectrometer. We use as an example the class of particles that are composed of sulfate mixed with oxygenated organics to illustrate how multidimensional single-particle characterization can be extended to yield in addition quantitative information about the composition of individual particles. We show that the data provide the relative concentrations of organics and sulfates, the density of the two fractions, and particle hygroscopicity.

17.
Environ Sci Technol ; 42(21): 8033-8, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19031898

RESUMEN

Particle volumes are most often obtained by measuring particle mobility size distributions and assuming that the particles are spherical. Particle volumes are then converted to mass loads by using particle densities that are commonly estimated from measured mobility and vacuum aerodynamic diameters, assuming that the particles are spherical. For aspherical particles, these assumptions can introduce significant errors. We present in this work a new method that can be applied to any particle system to determine in real time whether the particles are spherical or not. We use our second-generation single particle mass spectrometer (SPLAT II) to measure with extremely high precision the vacuum aerodynamic size distributions of particles that are classified by differential mobility analyzer and demonstrate that the line shape of these vacuum aerodynamic size distributions provide a way to unambiguously distinguish between spherical and aspherical particles. Moreover, the very same experimental system is used to obtain the size, density, composition, and dynamic shape factors of individual particles. We present an application of this method to secondary organic aerosols that are formed as a result of ozonolysis of alpha-pinene in the presence and absence of an OH scavenger and find these particles to be spherical with densities of 1.198 +/- 0.004 and 1.213 +/- 0.003 g cm(-3), respectively.


Asunto(s)
Aerosoles/química , Espectrometría de Masas/métodos , Monoterpenos/química , Ozono/química , Tamaño de la Partícula , Monoterpenos Bicíclicos , Dietilhexil Ftalato/química , Poliestirenos/química , Pirenos/química , Cloruro de Sodio/química , Factores de Tiempo , Vacio
18.
Phys Chem Chem Phys ; 10(21): 3063-71, 2008 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-18688369

RESUMEN

The photooxidation of 0.6-0.9 ppm alpha-pinene in the presence of a deliquesced thin film of NaNO(3), and for comparison increasing concentrations of NO(2), was studied in a 100 L Teflon(R) chamber at relative humidities from 72-88% and temperatures from 296-304 K. The loss of alpha-pinene and the formation of gaseous products were followed with time using proton transfer mass spectrometry. The yields of gas phase products were smaller in the NaNO(3) experiments than in NO(2) experiments. In addition, pinonic acid, pinic acid, trans-sobrerol and other unidentified products were detected in the extracts of the wall washings only for the NaNO(3) photolysis. These data indicate enhanced loss of alpha-pinene at the NaNO(3) thin film during photolysis. Supporting the experimental results are molecular dynamics simulations which predict that alpha-pinene has an affinity for the surface of the deliquesced nitrate thin film, enhancing the opportunity for oxidation of the impinging organic gas during the nitrate photolysis. This new mechanism of oxidation of organics may be partially responsible for the correlation between nitrate and the organic component of particles observed in many field studies, and may also contribute to the missing source of SOA needed to reconcile model predictions and field measurements. In addition, photolysis of nitrate on surfaces in the boundary layer may lead to oxidation of co-adsorbed organics.


Asunto(s)
Monoterpenos/química , Nitratos/química , Monoterpenos Bicíclicos , Simulación por Computador , Iones/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Fotoquímica
19.
Anal Chem ; 78(19): 6942-7, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17007518

RESUMEN

The extremely high particle transmission efficiency of aerodynamic lens inlets resulted in their wide use in aerosol mass spectrometers. One of the consequences of transporting particles from high ambient pressure into the vacuum is that it is accompanied by a rapid drop in relative humidity (RH). Since many atmospheric particles exist in the form of hygroscopic water droplets, a drop in RH may result in a significant loss of water and even a change in phase. How much water is lost in these inlets is presently unknown. Since water loss can affect particle size, transmission efficiency, ionization probability, and mass spectrum, it is imperative to provide definitive experimental data that can serve to guide the field to a reasonable and uniform sampling approach. In this study, we present the results of a number of highly resolved measurements, conducted under well-defined conditions, of water evaporation from a range of particles, during their transport through an aerodynamic lens inlet. We conclude that the only sure way to avoid ambiguities during measurements of aerodynamic diameter in instruments that utilize low-pressure aerodynamic lens inlets is to dry the particles prior to sampling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA