RESUMEN
The combination of radiotherapy and immunotherapy is a promising approach that has been shown in clinical trials to improve significantly survival and response rates compared with monotherapy against solid tumor. Since anti-CTLA-4 antibodies block immunosuppressive signals mainly in the lymph nodes (LNs), efficient drug delivery to the lymphatic system is desirable. However, the immune checkpoint inhibitors, especially anti-CTLA-4 are currently administered intravenously (i.v.), resulting in limited efficacy in controlling solid tumor and inhibiting metastases, and the method of administration has not been optimized. Here, we show that a combination of local radiotherapy and administration of anti-CTLA-4 antibodies using a lymphatic drug delivery system (LDDS) suppresses solid tumor and metastases. We compared the efficacy of LDDS-based immunotherapy or radioimmunotherapy with i.v. administration in a solid-tumor model created by subcutaneous inoculation into LN-swollen mice with osteosarcoma cells. Tumor-bearing mice were divided into various groups (no treatment, immunotherapy [i.v. or LDDS], radiotherapy, and radioimmunotherapy [i.v. or LDDS]) and were observed for 28 days. Immunotherapy was administered with a cumulative dose of 10 mg/kg of anti-CTLA-4 monoclonal antibody, and radiotherapy was administered with a cumulative 8 Gy of fractionated X-ray irradiation. For immunotherapy alone, LDDS provided slight tumor growth inhibition but did not inhibit distant metastasis. For radioimmunotherapy, however, tumor growth was delayed and distant metastasis was suppressed compared with radiotherapy alone. In particular, the LDDS group achieved a high tumor-suppressive effect with T cell-mediated immune activity, indicating the efficacy of LDDS in radioimmunotherapy.
RESUMEN
A moment magnitude (Mw) 7.5 earthquake (the Global IDentifire (GLIDE) number: # Q-2024-000001-JPN) struck the Noto Peninsula of Ishikawa Prefecture on 1 January 2024 at 16:10 (Japan Standard Time). The reversed fault, 150 km in length and subducting beneath the peninsula, resulted in maximum seismic intensity 7 shaking, triggered the tsunami, destroyed over 43 thousand buildings, and disrupted roads and lifelines. The disaster claimed 236 deaths, including 15 indirect disaster deaths as of Jan. 28, 2024. There were Disaster Base Hospitals (DBHs) in the region, which survived structurally but suffered from impaired functions and the surge of medical needs of affected people. The disaster medical system of Japan immediately responded and coordinated the hundreds of emergency medical teams (EMTs), i.e., the Japan Disaster Medical Assistance Team (DMAT), from all over the country. Tohoku University Hospital, which had the experience of the 2011 Great East Japan Earthquake (GEJE), joined the coordinated response, dispatching a chain of DMATs, which helped the medical and public health coordination in Wajima City. The medical and public health needs included injuries, non-communicable diseases, infectious diseases, mental health issues, and maternal and child health issues, which were similar in the affected communities in GEJE. Although the actual damage far exceeded expectations, the structural retrofitting and business continuity plans of DBHs and the coordinated response of the national disaster medical system enhanced the effectiveness of medical and public health response.
Asunto(s)
Planificación en Desastres , Desastres , Terremotos , Niño , Humanos , Hospitales Universitarios , Tsunamis , JapónRESUMEN
After the Fukushima nuclear power plant accident in 2011, many types of survey meters were used, including Geiger-Müller (GM) survey meters, which have long been used to measure ß-rays. Recently, however, a novel radiation survey meter that uses a plastic-scintillation sensor has been developed. Although manufacturers' catalog data are available for these survey meters, there have been no user reports on performance. In addition, the performance of commercial plastic-scintillation survey meters has not been evaluated. In this study, we experimentally compared the performance of a plastic-scintillation survey meter with that of a GM survey meter. The results show that the two instruments performed very similarly in most respects. The GM survey meter exhibited count losses when the radiation count rate was high, whereas the plastic-scintillation survey meter remained accurate under such circumstances, with almost no count loss at high radiation rates. For measurements at background rates (i.e., low counting rates), the counting rates of the plastic-scintillation and GM survey meters were similar. Therefore, an advantage of plastic-scintillation survey meters is that they are less affected by count loss than GM survey meters. We conclude that the plastic-scintillation survey meter is a useful ß-ray measuring/monitoring instrument.
RESUMEN
Occupational radiation exposure to the eye lens of medical staff during endoscopic retrograde cholangiopancreatography (ERCP) should be kept low so as not to exceed annual dose limits. Dose should be low to avoid tissue reactions and minimizing stochastic effects. It is known that the head and neck of the staff are exposed to more scattered radiation in an over-couch tube system than in a C-arm system (under-couch tube). However, this is only true when radiation-shielding curtains are not used. This study aimed to compare the protection radiation to the occupationally exposed worker between a lead curtain mounted on a C-arm system and an ERCP-specific lead curtain mounted on an over-couch tube system. A phantom study simulating a typical setting for ERCP procedures was conducted, and the scattered radiation dose at four staff positions were measured. It was found that scattered radiation doses were higher in the C-arm with a lead curtain than in the over-couch tube with an ERCP-specific lead curtain at all positions measured in this study. It was concluded that the over-couch tube system with an ERCP-specific lead curtain would reduce the staff eye dose by less than one-third compared to the C-arm system with a lead curtain. For the C-arm system, it is necessary to consider more effective radiation protection measures for the upper body of the staff, such as a ceiling-suspended lead screen or another novel shielding that do not interfere with procedures.
Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Exposición Profesional , Protección Radiológica , Protección Radiológica/instrumentación , Humanos , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Dosis de Radiación , Fantasmas de Imagen , Diseño de Equipo , Exposición a la Radiación/análisisRESUMEN
Given the new recommendations for occupational eye lens doses, various lead glasses have been used to reduce irradiation of interventional radiologists. However, the protection afforded by lead glasses over prescription glasses (thus over-glasses-type eyewear) has not been considered in detail. We used a phantom to compare the protective effects of such eyewear and regular eyewear of 0.07 mm lead-equivalent thickness. The shielding rates behind the eyewear and on the surface of the left eye of an anthropomorphic phantom were calculated. The left eye of the phantom was irradiated at various angles and the shielding effects were evaluated. We measured the radiation dose to the left side of the phantom using RPLDs attached to the left eye and to the surface/back of the left eyewear. Over-glasses-type eyewear afforded good protection against x-rays from the left and below; the average shielding rates on the surface of the left eye ranged from 0.70-0.72. In clinical settings, scattered radiation is incident on physicians' eyes from the left and below, and through any gap in lead glasses. Over-glasses-type eyewear afforded better protection than regular eyewear of the same lead-equivalent thickness at the irradiation angles of concern in clinical settings. Although clinical evaluation is needed, we suggest over-glasses-type Pb eyewear even for physicians who do not wear prescription glasses.
Asunto(s)
Dispositivos de Protección de los Ojos , Anteojos , Exposición Profesional , Dosis de Radiación , Protección Radiológica , Humanos , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Fantasmas de Imagen , Ojo/efectos de la radiación , Traumatismos por Radiación/prevención & controlRESUMEN
BACKGROUND: Plastic additives have adverse effects on human health. Children frequently use toys that contain various substances found in paints, plasticizers, and other materials, which heighten the risk of specific chemical exposure. Infants are particularly prone to chemical exposure through the "mouthing" behavior because of the possibility of placing toys in their mouths. Thus, this vulnerability should be considered during risk assessments of chemical exposure. METHODS: This study performed a comprehensive analysis of the chemical components in various 84 plastic toys including "designated toys" (toys that may be harmful to infant health if in contact with their mouths: Article 78 of the Enforcement Regulations of the Food Sanitation Law by the Minister of Health, Labor and Welfare) such as dolls, balls, blocks, bathing toys, toy vehicles, pacifiers, and household items, purchased in the Japanese market by nontargeted and targeted analysis. RESULTS: Plasticizers, flame retardants, and fragrances were the main compounds in almost all the toy products. The results showed that plastic products made in China tended to contain high levels of phthalate esters. In particular, hazardous plasticizers, such as diisodecyl, di-n-octyl, and diisononyl phthalates were detected above the regulatory limit (0.1%) in used products manufactured before regulations were passed in Japan. Furthermore, we detected alternative plasticizers, such as acetyl tributyl citrate (ATBC; 52%), diisononyl adipate (DINA; 50%), and di(2-ethylhexyl) terephthalate (DEHT; 40%). ATBC was detected at high concentrations in numerous toy products. Thus, infants with free access to indoor plastic toys might be exposed to these chemicals. CONCLUSIONS: This study observed that the chemical profiles of toy products were dependent on the year of manufacture. Furthermore, the detection of currently regulated plasticizers in secondhand products manufactured before regulations were enforced, along with the increasing trend of using alternative substances to regulated phthalate esters in products, suggests the potential exposure of infants to these plasticizers through the use of toys. Therefore, regular fact-finding surveys should continue to be conducted for the risk assessment and safety management of domestic toy products.
Asunto(s)
Plastificantes , Plásticos , Juego e Implementos de Juego , Japón , Plastificantes/análisis , Humanos , Plásticos/análisis , Lactante , Retardadores de Llama/análisis , Ácidos Ftálicos/análisisRESUMEN
In 2011, the International Commission on Radiological Protection (ICRP) recommended a significant reduction in the lens-equivalent radiation dose limit, thus from an average of 150 to 20 mSv/year over 5 years. In recent years, the occupational dose has been rising with the increased sophistication of interventional radiology (IVR); management of IVR staff radiation doses has become more important, making real-time radiation monitoring of such staff desirable. Recently, the i3 real-time occupational exposure monitoring system (based on RaySafeTM) has replaced the conventional i2 system. Here, we compared the i2 and i3 systems in terms of sensitivity (batch uniformity), tube-voltage dependency, dose linearity, dose-rate dependency, and angle dependency. The sensitivity difference (batch uniformity) was approximately 5%, and the tube-voltage dependency was <±20% between 50 and 110 kV. Dose linearity was good (R2 = 1.00); a slight dose-rate dependency (~20%) was evident at very high dose rates (250 mGy/h). The i3 dosimeter showed better performance for the lower radiation detection limit compared with the i2 system. The horizontal and vertical angle dependencies of i3 were superior to those of i2. Thus, i3 sensitivity was higher over a wider angle range compared with i2, aiding the measurement of scattered radiation. Unlike the i2 sensor, the influence of backscattered radiation (i.e., radiation from an angle of 180°) was negligible. Therefore, the i3 system may be more appropriate in areas affected by backscatter. In the future, i3 will facilitate real-time dosimetry and dose management during IVR and other applications.
Asunto(s)
Protección Radiológica , Radiología Intervencionista , Humanos , Dosis de Radiación , Dosímetros de Radiación , RadiometríaRESUMEN
The diagnostic reference level (DRL) is an effective tool for optimising protection in medical exposures to patients. However regarding air kerma at the patient entrance reference point (Ka,r), one of the DRL quantities for endoscopic retrograde cholangiopancreatography (ERCP), manufacturers use a variety of the International Electrotechnical Commission and their own specific definitions of the reference point. The research question for this study was whetherKa,ris appropriate as a DRL quantity for ERCP. The purpose of this study was to evaluate the difference betweenKa,rand air kerma incident on the patient's skin surface (Ka,e) at the different height of the patient couch for a C-arm system. Fluoroscopy and radiography were performed using a C-arm system (Ultimax-i, Canon Medical Systems, Japan) and a over-couch tube system (CUREVISTA Open, Fujifilm Healthcare, Japan).Ka,ewas measured by an ion chamber placed on the entrance surface of the phantom. Kerma-area product (PKA) andKa,rwere measured by a built-inPKAmeter and displayed on the fluoroscopy system.Ka,edecreased whileKa,rincreased as the patient couch moved away from the focal spot. The uncertainty of theKa,e/Ka,rratio due to the different height of the patient couch was estimated to be 75%-94%.Ka,rmay not accurately representKa,e.PKAwas a robust DRL quantity that was independent of the patient couch height. We cautioned against optimising patient doses in ERCP with DRLs set in terms ofKa,rwithout considering the patient couch height of the C-arm system. Therefore, we recommend thatKa,ris an inappropriate DRL quantity in ERCP using the C-arm system.
Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Niveles de Referencia para Diagnóstico , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Dosis de Radiación , Fluoroscopía , RadiografíaRESUMEN
Although the amount of chemicals in heated tobacco products (HTPs) aerosols is reduced compared to conventional combustible cigarette smoke, the association between HTPs and reduced health effects remains unclear. In this study, we hypothesized that exposure to IQOS, an HTP, would increase oxidative stress and affect the secretion of inflammatory cytokines. First, C57BL/6 mice exposed to IQOS aerosols were evaluated to determine the adverse effects of IQOS exposure. IQOS exposure significantly decreased the concentration of GSH in alveolar macrophages in a dose-dependent manner and increased the percentage of GSSG in lung tissues. These results indicate that IQOS exposure increases oxidative stress, and GSH is consumed to remove oxidative stress. In addition, foamy alveolar macrophages were observed in the bronchial alveolar lavage fluid after IQOS exposure. Although the concentration of inflammatory cytokines, IL-6, and GM-CSF, in the plasma increased significantly after IQOS exposure, there were no significant changes in other cytokines. These results indicate that short-term exposure to IQOS aerosols may increase oxidative stress and induce the secretion of inflammatory cytokines. Lastly, the longer-term effects of IQOS aerosols exposure should be evaluated in the future.
Asunto(s)
Productos de Tabaco , Aerosoles , Animales , Citocinas , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Nicotiana , Productos de Tabaco/efectos adversosRESUMEN
The exact profiles of the clinical symptoms related to the SARS-CoV-2 Omicron variant (B.1.1.529) remain largely uncertain. Therefore, this study aimed to clarify the clinical manifestations of infection with this variant. We enrolled individuals who were tested by quantitative nasopharyngeal swab reverse transcription-polymerase chain reaction (RT-PCR) test at a large screening center in a city of Japan during the B.1.1.529 Omicron variant wave between January and May 2022, after contact with COVID-19 patients. Swab tests were planned to be performed approximately 4-5 days after contact. The presence of COVID-19-related symptoms was assessed at the swab test site. Among the 2,507 enrolled individuals, 943 (37.6%) were RT-PCR test-positive and 1,564 (62.4%) were test-negative. Among the 943 PCR test-positive participants, the prevalence of the symptoms was as follows: 47.3% with cough, 32.9% with sore throat, 18.4% with fatigability, 12.7% with fever of ≥ 37.5â, 9.9% with dyspnea, 2.1% with dysosmia, and 1.4% with dysgeusia. The prevalence of cough, sore throat, dyspnea, and fatigability was higher among adults aged ≥ 18 years than among children and adolescents. The prevalence of dysosmia and dysgeusia remarkably decreased during the Omicron wave (1-3%) compared to during the pre-Omicron variant waves (15-25%). In summary, common COVID-19-related symptoms during the Omicron variant wave included cough and sore throat, followed by fatigability, fever, and dyspnea. The prevalence of most of these symptoms was higher in adults than in non-adults. The prevalence of dysosmia and dysgeusia remarkably decreased with the Omicron variant than with pre-Omicron variants.
Asunto(s)
COVID-19 , Trastornos del Olfato , Faringitis , Adolescente , COVID-19/epidemiología , Niño , Tos , Disgeusia , Disnea , Fiebre , Humanos , Japón/epidemiología , SARS-CoV-2RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remained a major global health concern in 2021. To suppress the spread of infection, mass vaccinations have been performed across countries worldwide. In Japan, vaccinations of the first and second doses for most of the nation were performed during the nationwide outbreak of the B.1.617.2 (Delta) variant with the L452R spike protein mutation, and the effectiveness of the vaccinations to suppress the spread of COVID-19 among the people in Japan remains uncertain. In this study, adults aged ≥18 years, who were in contact with patients with COVID-19 and underwent nasopharyngeal swab reverse transcription-polymerase chain reaction (RT-PCR) tests during August and September 2021 at a mass screening test center in Japan, were enrolled. In this period, more than 95% of the COVID-19 infections were reportedly caused by the Delta variant. As a result, a total of 784 adults with recent contact history, including 231 (29.5%) RT-PCR test-positive cases, were enrolled. The test positivity rate was lower in individuals who had been vaccinated twice than in unvaccinated individuals (12.5% vs. 39.0%, p < 0.0001), with the risk ratio of 0.32 (95% confidence interval 0.23-0.46). The vaccine effectiveness was the highest between 7-90 days after the second vaccine dose. In conclusion, two doses of mRNA COVID-19 vaccines effectively suppressed transmission in Japan during the nationwide pandemic of the Delta variant, estimated to have prevented 50-80% of the infection.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Japón/epidemiología , Pandemias , ARN Mensajero , SARS-CoV-2/genéticaRESUMEN
INTRODUCTION: There is no standardized aerosol exposure apparatus to deliver heated tobacco products (HTPs) for in vivo experiments. Therefore, we developed a novel HTPs aerosol exposure apparatus for mice and demonstrated that nicotine and other chemicals in HTPs aerosol generated by the apparatus can be delivered to mice which replicate human smoke. AIMS AND METHODS: The amounts of nicotine, tar, and carbon monoxide (CO) in IQOS (Marlboro Regular HeatSticks) aerosol generated by two types of apparatuses were determined. C57BL/6N mice were exposed to IQOS aerosol, followed by determination of the urinary nicotine metabolites. Further, the skin surface temperature of mice was monitored to confirm the vasoconstriction action of nicotine. RESULTS: The amount of chemicals in IQOS aerosol by the novel air push-in inhalation apparatus for HTPs (APIA) was equivalent to that of the analytical vaping machine (LM4E) (1.60 ± 0.08 [APIA] vs. 1.46 ± 0.07 mg/stick [LM4E] in nicotine and 0.55 ± 0.04 [APIA] vs. 0.45 ± 0.01 mg/stick [LM4E] in CO). After mice were exposed to IQOS aerosol by APIA, the urinary nicotine metabolite levels were determined; peak values in cotinine and 3-hydroxycotinine (3-HC) were 6.82 µg/mg creatinine at 1 hour after exposure and 32.9 µg/mg creatinine at 2 hours after exposure, respectively. The skin surface temperature decreased and was lower (33.5°C ± 0.5°C) at 30 minutes than before exposure (37.6°C ± 0.8°C). CONCLUSIONS: The new apparatus for HTPs aerosol exposure to mice showed good performances in terms of both chemical analysis of collected aerosol and fluctuations in the urinary nicotine metabolites. IMPLICATIONS: The APIA reported in this study can expose small animals to HTPs aerosol, including nicotine and other chemical substances as same amounts as LM4E and replicate actual human smoking process by in vivo experiments. Therefore, the experiments using APIA can provide evidence to assess the health risks of HTPs use.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Aerosoles/análisis , Animales , Ratones , Ratones Endogámicos C57BL , Nicotina , Humo/efectos adversos , Productos de Tabaco/toxicidadRESUMEN
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the world's largest public health concern in 2021. This study evaluated the associations of the prevalence of airway symptoms among the tested individuals and data regarding the natural environmental factors with the weekly number of newly diagnosed COVID-19 patients in Sendai City (Nt). For the derivatives of the screening test results, data from individuals with a contact history who underwent nasopharyngeal swab reverse transcription-polymerase chain reaction (RT-PCR) testing between July 2020 and April 2021 (6,156 participants, including 550 test-positive patients) were used. The value of Nt correlated with the weekly RT-PCR test-positive rate after close contact, prevalence of cough symptoms in test-positive individuals or in test-negative individuals, lower air temperature, lower air humidity, and higher wind speed. The weekly test-positive rate correlated with lower air humidity and higher wind speed. In cross-correlation analyses, natural environmental factors correlated with the regional epidemic status on a scale of months, whereas the airway symptoms among non-COVID-19 population affected on a scale of weeks. When applying an autoregression model to the serial data of Nt, large-scale movements of people were suggested to be another factor to influence the local epidemics on a scale of days. In conclusion, the prevalence of cough symptoms in the local population, lower air humidity or higher wind speed, and large-scale movements of people in the locality would jointly influence the local epidemic status of COVID-19.
Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Ambiente , Epidemias , Adolescente , Adulto , COVID-19/diagnóstico , COVID-19/virología , Niño , Trazado de Contacto , Femenino , Humanos , Japón/epidemiología , Masculino , Prevalencia , Análisis de Regresión , SARS-CoV-2/fisiología , Factores de Tiempo , Adulto JovenRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health concern in 2021. However, the risk of attending schools during the pandemic remains unevaluated. This study estimated the secondary transmission rate at schools using the results of a real-time reverse transcription-polymerase chain reaction (RT-PCR) screening test performed between July 2020 and April 2021, before starting the nationwide mass vaccination. A total of 1,924 students (20 RT-PCR-positive; 1.0%) from 52 schools or preschools were evaluated, together with 1,379 non-adults (95 RT-PCR-positive; 6.9%) exposed to SARS-CoV-2 in non-school environments. Assuming that the infectious index cases were asymptomatic and the transmission at schools followed a Bernoulli process, we estimated the probability of transmission after each contact at school as approximately 0.005 (0.5% per contact) with the current infection prevention measures at schools in Japan (i.e., hand hygiene, physical distancing, wearing masks, and effective ventilation). Furthermore, assuming that all children are capable of carrying the infection, then contact between an index case and 20-30 students per day at schools would yield the expected value for secondary cases of ≥ 1.0, during the 10 days of the infectious period. In conclusion, with the current infection prevention measures at schools in Japan, secondary transmission at schools would occur in approximately every 200 contacts. When considering this rate, compliance with the current infection prevention measures at schools and early detection and quarantine of the index cases would be effective in preventing the spread of COVID-19 at schools.
Asunto(s)
COVID-19/transmisión , Cuarentena , Estudiantes , Adolescente , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Preescolar , Femenino , Humanos , Japón/epidemiología , Masculino , SARS-CoV-2 , Instituciones AcadémicasRESUMEN
In response to the COVID-19 pandemic caused by SARS-CoV-2 in 2020, we conducted drive-through nasopharyngeal swab testing for COVID-19 in Sendai city, Japan, since April 2020. All tested individuals were judged in advance by public health centers for the necessity of undergoing the test with possible contact history and/or symptoms suggestive of COVID-19. In this study, to identify the predictors of SARS-CoV-2 test positivity for more efficient and evidenced selection of suspected individuals, we enrolled 3,540 consecutive individuals, tested in the first 7 months of the testing program, with data regarding to the history of close contact with COVID-19 patients, including those involved in cluster outbreaks. This cohort included 284 foreign students (257 males and 27 females) from a vocational school involved in the largest cluster outbreak in the area. Close contact history was present in 952 (26.9%) of the participants. The reverse transcription-polymerase chain reaction (RT-PCR) test results showed that 164 participants (4.6%) were positive and 3,376 participants (95.4%) were negative for the SARS-CoV-2 nucleocapsid gene (N2). In the univariate and multivariate analyses, history of close contact with COVID-19 patients, higher age, cough symptoms, and non-native ethnicity were predictors for SARS-CoV-2 test positivity. However, the significance of age and foreign nationality disappeared or declined upon excluding the foreign students from the aforementioned largest cluster outbreak. In conclusion, a history of close contact with COVID-19 patients and the presence of cough symptoms are significant predictors of SARS-CoV-2 test positivity.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Unidades de Diagnóstico Rápido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Manejo de Especímenes/métodos , Adulto , Brotes de Enfermedades , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Desarrollo de Programa , Salud Pública , SARS-CoV-2/genética , Adulto JovenRESUMEN
BACKGROUND: In recent years, heated tobacco products (HTPs), which are widely used in Japan, have been sold by various brands using additives such as flavors. It has been reported that the components of mainstream smoke are different from those of conventional cigarettes. In this study, we established an analytical method for furans and pyridines in the mainstream smoke, which are characteristic of HTPs and particularly harmful among the generated components, and investigated the amount of component to which the smokers are exposed. METHODS: We established a simple analytical method for simultaneous analysis of gaseous and particulate compounds in the mainstream smoke of HTPs (IQOS, glo, ploom S) in Japan by combining a sorbent cartridge and glass fiber filter (Cambridge filter pad (CFP)). Both the sorbent cartridge and CFP were extracted using 2-propanol and analyzed via GC-MS/MS to determine the concentration of furans and pyridines generated from each HTP. RESULTS: The results showed that the levels of target furans such as furfural, 2-furanmethanol, 2(5H)-furanone, and 5-methylfurfural tended to be higher in the mainstream smoke of glo than in standard cigarettes (3R4F). Pyridine, which is generated at a high level in 3R4F as a combustion component, and 4-ethenylpyridine (EP), which is a known marker of environmental tobacco smoke, were detected. Among these components, 2-furanmethanol and pyridine are classified as Group 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC). Therefore, it is possible that they will contribute to the health effects caused by use of HTPs. CONCLUSIONS: Using the new collection and analytical method for furans and pyridines in the mainstream smoke of HTPs, the level of each compound to which smokers are exposed could be clarified. By comprehensively combining information on the amount of ingredients and toxicity, it will be possible to perform a more detailed calculation of the health risks of using HTPs. In addition, the components detected in this study may be the causative substances of indoor pollution through exhaled smoke and sidestream smoke; therefore, environmental research on the chemicals generated from HTPs would be warranted in future studies.
Asunto(s)
Furanos/análisis , Piridinas/análisis , Humo/análisis , Productos de Tabaco , Cromatografía de Gases y Espectrometría de Masas , Humanos , Japón , Espectrometría de Masas en TándemRESUMEN
An electronic cigarette (e-cigarette) is a product used to smoke aerosol by heating a solution of "e-liquid" that consists of propylene glycol (PG) and glycerol (GLY) containing nicotine and flavors. In this study, thermal decomposition products generated from three brands of e-cigarettes were determined at various electric power levels. When using neat PG or GLY instead of e-liquid, propylene oxide was detected only in the gas phase from PG and not detected from GLY. In contrast, glycidol was detected only from GLY and not from PG. Almost all of the glyoxal and acrolein was detected from GLY, but formaldehyde and methyl glyoxal were detected from both PG and GLY. Using commercially available e-liquids, the same results were obtained. Nearly all chemical compounds generated from e-cigarettes have a carbon number of 3 or less except for nicotine and flavors. We measured chemical compounds generated from e-cigarettes at various electric power levels (1-85 W). At an electric power of 10 W, the generation of chemical compounds was very low; however, when the electric power exceeded 40 W, it increased exponentially. As thermal decomposition products of e-liquid, acetaldehyde, acrolein, and propylene oxide mainly occur as gaseous matter, while glyoxal, methylglyoxal, and glycidol mainly occur as particulate matter. Formaldehyde exits in both gaseous and particulate matter forms. Thermal decomposition products can be divided into three groups: thermal decomposition products originating from PG and GLY, those originating from other sources, and those directly generated. Concentrations of these thermal decomposition products were mostly higher than those in traditional cigarettes. In particular, thermal decomposition products generated from one of the studied e-cigarettes were very high; e.g., formaldehyde reached 4400 µg/15 puffs at 50 W. E-cigarette users must know that hazardous substances are generated even within the recommended electric power limits.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Glicerol/análisis , Nicotina/análisis , Material Particulado/análisis , Propilenglicol/análisis , Temperatura , Estructura MolecularRESUMEN
Radiation-related tissue injuries after medical radiation procedures, such as fluoroscopically guided intervention (FGI), have been reported in patients. Real-time monitoring of medical radiation exposure administered to patients during FGI is important to avoid such tissue injuries. In our previous study, we reported a novel (prototype) real-time radiation system for FGI. However, the prototype sensor indicated low sensitivity to radiation exposure from the side and back, although it had high-quality fundamental characteristics. Therefore, we developed a novel 4-channel sensor with modified shape and size than the previous sensor, and evaluated the basic performance (i.e., measured the energy, dose linearity, dose rate, and angular dependence) of the novel and previous sensors. Both sensors of our real-time dosimeter system demonstrated the low energy dependence, excellent dose linearity (R2 = 1.0000), and good dose rate dependence (i.e., within 5% statistical difference). Besides, the sensitivity of 0° ± 180° in the horizontal and vertical directions was almost 100% sensitivity for the new sensor, which significantly improved the angular dependence. Moreover, the novel dosimeter exerted less influence on X-ray images (fluoroscopy) than other sensors because of modifying a small shape and size. Therefore, the developed dosimeter system is expected to be useful for measuring the exposure of patients to radiation doses during FGI procedures.
Asunto(s)
Dosis de Radiación , Dosímetros de Radiación , Radiación , Sistemas de Computación , Fluoroscopía , HumanosRESUMEN
Biodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially. Here, we report changes in the levels of murine blood cell metabolites following exposure to X-rays in vivo. Levels of blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. The levels of 100 metabolites were altered substantially following exposure. We identified 2-aminobutyric acid, 2'-deoxycytidine, and choline as potentially useful markers of radiation exposure and established a potential prediction panel of the exposure dose using stepwise regression. Levels of blood cell metabolites may be useful biomarkers in estimating exposure doses during unexpected radiation incidents.
Asunto(s)
Biomarcadores , Células Sanguíneas/metabolismo , Células Sanguíneas/efectos de la radiación , Electroforesis Capilar , Radiación Ionizante , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Dosis-Respuesta en la Radiación , Metaboloma , Metabolómica/métodosRESUMEN
Monitoring and protecting of occupational eye doses in interventional radiology (IR) are very important matters. DOSIRIS™ is the useful solution to estimate the 3 mm dose-equivalent (Hp(3)), and it can be worn behind lead glasses. And DOSIRIS™, adjustable according to 3 axes, it is ideally placed as close to the eye and in contact with the skin. So, DOSIRIS™ will be suitable eye lens dosimeter. However, the fundamental characteristics of the DOSIRIS™ in the diagnostic x-ray energy domain (including that of IR x-ray systems) remain unclear. Here, we evaluated the performance of the dosimeter in that energy range. As a result, the DOSIRIS™ has good fundamental characteristics (batch uniformity, dose linearity, energy dependence, and angular dependence) in the diagnostic x-ray energy domain. We conclude that the DOSIRIS™ has satisfactory basic performance for occupational eye dosimetry in diagnostic x-ray energy settings (including IR x-ray systems).