Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Genet ; 66(1): 63-71, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31292684

RESUMEN

The mRNA export adaptor Yra1 is essential in S. cerevisiae, and conserved from yeast to human (ALY/REF). It is well characterized for its function during transcription elongation, 3' processing and mRNA export. Recently, different studies linked Yra1 to genome stability showing that Yra1 overexpression causes DNA Double Strand Breaks through DNA:RNA hybrids stabilization, and that Yra1 depletion affects DSB repair. However, the mechanisms through which Yra1 contributes to genome stability maintenance are not fully understood. Interestingly, our results showed that the Yra1 C-box domain is required for Yra1 recruitment to an HO-induced irreparable DSB following extensive resection, and that it is essential to repair an HO-induced reparable DSB. Furthermore, we defined that the C-box domain of Yra1 plays a crucial role in DSB repair through homologous recombination but not through non-homologous end joining. Future studies aim at deciphering the mechanism by which Yra1 contributes to DSB repair by searching for Yra1 partners important for this process. This review focuses on the functional complexity of the Yra1 protein, not only summarizing its role in mRNA biogenesis but also emphasizing its auto-regulation and implication in genome integrity either through DNA:RNA hybrids stabilization or DNA double strand break repair in S. cerevisiae.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Intrones , Proteínas Nucleares/genética , Unión Proteica , Estructuras R-Loop , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 46(15): 7586-7611, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30011030

RESUMEN

The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast's protein-protein and protein-DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.


Asunto(s)
Ciclo Celular/genética , Metabolismo Energético/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Segregación Cromosómica/genética , Mitocondrias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN de Hongos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Transcripción Genética/genética
3.
PLoS One ; 14(4): e0206336, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30951522

RESUMEN

Yra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Here, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. We further show that Yra1 binds an HO-induced irreparable DSB in a process dependent on resection. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. While Yra1 sumoylation and/or ubiquitination are dispensable, the Yra1 C-box region is essential in this process.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , Proteínas Nucleares/genética , Dominios Proteicos , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Commun ; 6: 6643, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25851096

RESUMEN

The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis.


Asunto(s)
Segregación Cromosómica/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Anafase/genética , Replicación del ADN/genética , Regulación hacia Abajo , Fase S/genética , Saccharomyces cerevisiae
5.
Nat Struct Mol Biol ; 20(7): 851-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770821

RESUMEN

Many Saccharomyces cerevisiae genes encode antisense transcripts, some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense (AS) RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single-molecule resolution fluorescent in situ hybridization (smFISH) to investigate antisense-mediated transcription regulation. We show that PHO84 AS RNA acts as a bimodal switch, in which continuous, low-frequency antisense transcription represses sense expression within individual cells. Surprisingly, antisense RNAs do not accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, rather than stabilizing PHO84 AS RNA, the loss of Rrp6 favors its elongation by reducing early transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 silencing results from antisense transcription through the promoter rather than the static accumulation of antisense RNAs at the repressed gene.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Simportadores de Protón-Fosfato/genética , ARN sin Sentido/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , ADN Helicasas/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/fisiología , Histona Desacetilasas/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Hibridación Fluorescente in Situ , Metaloendopeptidasas/fisiología , Modelos Genéticos , Complejos Multiproteicos , Proteínas Nucleares/fisiología , Poliadenilación , Polinucleotido Adenililtransferasa/fisiología , Regiones Promotoras Genéticas/genética , Simportadores de Protón-Fosfato/biosíntesis , ARN Helicasas/fisiología , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA