Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(30): 5458-5467, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37414560

RESUMEN

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic µ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.


Asunto(s)
Cannabinoides , Endocannabinoides , Ratas , Masculino , Femenino , Animales , Endocannabinoides/metabolismo , Receptores de Cannabinoides , Monoacilglicerol Lipasas/farmacología , Transducción de Señal/fisiología , Ratas Sprague-Dawley , Dolor/metabolismo , Cannabinoides/farmacología , Ácido gamma-Aminobutírico/metabolismo , Inflamación/tratamiento farmacológico , Receptor Cannabinoide CB1
2.
J Physiol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031543

RESUMEN

Autonomic dysregulation, including sympathetic hyperactivity, is a common feature of hypertension (HT) and other cardiovascular diseases. The CNS plays a role in driving chronic sympathetic activation in disease, but several lines of evidence suggest that neuroplasticity in the periphery may also contribute. The potential contribution of postganglionic sympathetic neurons to sustained sympathetic hyperactivity is not well understood. We recently discovered that noradrenergic sympathetic neurons in the stellate ganglion (SG) have excitatory cholinergic collateral connections to other neurons within the ganglion. We hypothesize that remodelling of these neurons and increased cholinergic collateral transmission contributes to sustained sympathetic hyperactivity in cardiovascular diseases, including HT. To test that hypothesis, we examined the activity of sympathetic neurons in isolated SG under control conditions and after 1 week of HT induced by peripheral angiotensin II infusion, using whole-cell patch clamp recordings. Despite the absence of central inputs, we observed elevated spontaneous activity and synaptic transmission in sympathetic SG neurons from hypertensive mice that required generation of action potentials. Genetically disrupting cholinergic transmission in noradrenergic neurons decreased basal neuronal activity and prevented angiotensin II-mediated enhancement of activity. Similar changes in activity, driven by increased collateral transmission, were identified in cardiac projecting neurons and neurons projecting to brown adipose tissue. These changes were not driven by altered A-type K+ currents. This suggests that HT stimulates increased activity throughout the intraganglionic network of collateral connections, contributing to the sustained sympathetic hyperactivity characteristic in cardiovascular disease. KEY POINTS: Sympathetic neurons in ganglia isolated from angiotensin II-treated hypertensive mice are more active than neurons from control mice despite the absence of central activation. The enhanced activity is the result of a ganglionic network of cholinergic collaterals, rather than altered intrinsic excitability. Increased neuronal activity was observed in both cardiac neurons and brown adipose tissue-projecting neurons, which are not involved in cardiovascular homeostasis.

3.
Am J Physiol Heart Circ Physiol ; 326(1): H166-H179, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947434

RESUMEN

Neurons in the stellate ganglion (SG) provide sympathetic innervation to the heart, brown adipose tissue (BAT), and other organs. Sympathetic innervation to the heart becomes hyperactive following myocardial infarction (MI). The impact of MI on the morphology of cardiac sympathetic neurons is not known, but we hypothesized that MI would stimulate increased cell and dendritic tree size in cardiac neurons. In this study, we examined the effects of ischemia-reperfusion MI on sympathetic neurons using dual retrograde tracing methods to allow detailed characterization of cardiac- and BAT-projecting neurons. Different fluorescently conjugated cholera toxin subunit B (CTb) tracers were injected into the pericardium and the interscapular BAT pads, respectively. Experimental animals received a 45-min occlusion of the left anterior descending coronary artery and controls received sham surgery. One week later, hearts were collected for assessment of MI infarct and SGs were collected for morphological or electrophysiological analysis. Cardiac-projecting SG neurons from MI mice had smaller cell bodies and shorter dendritic trees compared with sham animals, specifically on the left side ipsilateral to the MI. BAT-projecting neurons were not altered by MI, demonstrating the subpopulation specificity of the response. The normal size and distribution differences between BAT- and cardiac-projecting stellate ganglion neurons were not altered by MI. Patch-clamp recordings from cardiac-projecting left SG neurons revealed increased spontaneous excitatory postsynaptic currents despite the decrease in cell and dendritic tree size. Thus, increased dendritic tree size does not contribute to the enhanced sympathetic neural activity seen after MI.NEW & NOTEWORTHY Myocardial infarction (MI) causes structural and functional changes specifically in stellate ganglion neurons that project to the heart, but not in cells that project to brown adipose fat tissue.


Asunto(s)
Infarto del Miocardio , Ganglio Estrellado , Animales , Ratones , Ganglio Estrellado/fisiología , Corazón/inervación , Neuronas/fisiología , Reperfusión
4.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846240

RESUMEN

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than ß-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


Asunto(s)
Regulación Alostérica/fisiología , Dolor/tratamiento farmacológico , Receptores Opioides mu/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Analgésicos , Analgésicos Opioides/farmacología , Animales , Células CHO , Cricetulus , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Morfina , Antagonistas de Narcóticos , Manejo del Dolor/métodos , Prueba de Estudio Conceptual , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/efectos de los fármacos
5.
J Physiol ; 601(7): 1247-1264, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36797985

RESUMEN

The sympathetic nervous system vitally regulates autonomic functions, including cardiac activity. Postganglionic neurons of the sympathetic chain ganglia relay signals from the central nervous system to autonomic peripheral targets. Disrupting this flow of information often dysregulates organ function and leads to poor health outcomes. Despite the importance of these sympathetic neurons, fundamental aspects of the neurocircuitry within peripheral ganglia remain poorly understood. Conventionally, simple monosynaptic cholinergic pathways from preganglionic neurons are thought to activate postganglionic sympathetic neurons. However, early studies suggested more complex neurocircuits may be present within sympathetic ganglia. The present study recorded synaptic responses in sympathetic stellate ganglia neurons following electrical activation of the pre- and postganglionic nerve trunks and used genetic strategies to assess the presence of collateral projections between postganglionic neurons of the stellate ganglia. Orthograde activation of the preganglionic nerve trunk, T-2, uncovered high jitter synaptic latencies consistent with polysynaptic connections. Pharmacological inhibition of nicotinic acetylcholine receptors with hexamethonium blocked all synaptic events. To confirm that high jitter, polysynaptic events were due to the presence of cholinergic collaterals from postganglionic neurons within the stellate ganglion, we knocked out choline acetyltransferase in adult noradrenergic neurons. This genetic knockout eliminated orthograde high jitter synaptic events and EPSCs evoked by retrograde activation. These findings suggest that cholinergic collateral projections arise from noradrenergic neurons within sympathetic ganglia. Identifying the contributions of collateral excitation to normal physiology and pathophysiology is an important area of future study and may offer novel therapeutic targets for the treatment of autonomic imbalance. KEY POINTS: Electrical stimulation of a preganglionic nerve trunk evoked fast synaptic transmission in stellate ganglion neurons with low and high jitter latencies. Retrograde stimulation of a postganglionic nerve trunk evoked direct, all-or-none action currents and delayed nicotinic EPSCs indistinguishable from orthogradely-evoked EPSCs in stellate neurons. Nicotinic acetylcholine receptor blockade prevented all spontaneous and evoked synaptic activity. Knockout of acetylcholine production in noradrenergic neurons eliminated all retrogradely-evoked EPSCs but did not change retrograde action currents, indicating that noradrenergic neurons have cholinergic collaterals connecting neurons within the stellate ganglion.


Asunto(s)
Neuronas Adrenérgicas , Ratones , Animales , Ratones Noqueados , Sistema Nervioso Simpático/fisiología , Ganglios Simpáticos/fisiología , Colinérgicos
6.
J Neurophysiol ; 129(5): 1237-1248, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073984

RESUMEN

The ventrolateral periaqueductal gray (vlPAG) is a key brain area within the descending pain modulatory pathway and an important target for opioid-induced analgesia. The vlPAG contains heterogeneous neurons with respect to neurotransmitter content, receptor and channel expression, and in vivo response to noxious stimuli. This study characterizes intrinsic membrane properties of vlPAG neurons to identify neuron types that respond to inflammation and determine whether the pain-responsive neurons are inhibited by opioids. Surveying 382 neurons identified four neuron types with distinct intrinsic firing patterns: Phasic (48%), Tonic (33%), Onset (10%), and Random (9%). Mu-opioid receptor (MOR) expression was determined by the ability of a selective MOR agonist (DAMGO) to activate G protein-coupled inwardly rectifying potassium channel (GIRK) currents. Opioid-sensitive neurons were observed within each neuron type. Opioid sensitivity did not correlate with other intrinsic firing features, including low-threshold spiking that has been previously proposed to identify opioid-sensitive GABAergic neurons in the vlPAG of mice. Complete Freund's adjuvant (CFA)-induced acute inflammation (2 h) had no effect on vlPAG neuron firing patterns. However, persistent inflammation (5-7 days) selectively activated Phasic neurons through a significant reduction in their firing threshold. Opioid-sensitive neurons were strongly activated compared with the opioid-insensitive Phasic neurons. Overall, this study provides a framework to further identify neurons activated by persistent inflammation so that they may be targeted for future pain therapies.NEW & NOTEWORTHY Intrinsic firing properties define four distinct vlPAG neuron populations, and a subset of each population expresses MORs coupled to GIRK channels. Persistent, but not acute, inflammation selectively activates opioid-sensitive Phasic vlPAG neurons. Although the vlPAG is known to contribute to the descending inhibition of pain, the activation of a single physiologically defined neuron type in the presence of persistent inflammation represents a mechanism by which the vlPAG participates in descending facilitation of pain.


Asunto(s)
Analgésicos Opioides , Sustancia Gris Periacueductal , Ratones , Animales , Analgésicos Opioides/farmacología , Dolor/inducido químicamente , Dolor/metabolismo , Neuronas GABAérgicas , Inflamación/inducido químicamente , Inflamación/metabolismo
7.
Mol Pharmacol ; 102(6): 269-279, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116788

RESUMEN

Pain management is an important problem worldwide. The current frontline approach for pain management is the use of opioid analgesics. The primary analgesic target of opioids is the µ-opioid receptor (MOR). Deletion of phospholipase Cß3 (PLCß3) or selective inhibition of Gßγ regulation of PLCß3 enhances the potency of the antinociceptive effects of morphine suggesting a novel strategy for achieving opioid-sparing effects. Here we investigated a potential mechanism for regulation of PLC signaling downstream of MOR in human embryonic kidney 293 cells and found that MOR alone could not stimulate PLC but rather required a coincident signal from a Gq-coupled receptor. Knockout of PLCß3 or pharmacological inhibition of its upstream regulators, Gßγ or Gq, ex vivo in periaqueductal gray slices increased the potency of the selective MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt in inhibiting presynaptic GABA release. Finally, inhibition of Gq- G protein-coupled receptor coupling in mice enhanced the antinociceptive effects of morphine. These data support a model where Gq and Gßγ-dependent signaling cooperatively regulate PLC activation to decrease MOR-dependent antinociceptive potency. Ultimately, this could lead to identification of new non-MOR targets that would allow for lower-dose utilization of opioid analgesics. SIGNIFICANCE STATEMENT: Previous work demonstrated that deletion of phospholipase Cß3 (PLCß3) in mice potentiates µ-opioid receptor (MOR)-dependent antinociception. How PLCß3 is regulated downstream of MOR had not been clearly defined. We show that PLC-dependent diacylglycerol generation is cooperatively regulated by MOR-Gßγ and Gq-coupled receptor signaling through PLCß3 and that blockade of either Gq-signaling or Gßγ signaling enhances the potency of opioids in ex vivo brain slices and in vivo. These results reveal potential novel strategies for improving opioid analgesic potency and safety.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Animales , Ratones , Humanos , Analgésicos Opioides/farmacología , Fosfolipasa C beta , Ratones Noqueados , Receptores Opioides mu/fisiología , Morfina/farmacología , Analgésicos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología
8.
Mol Psychiatry ; 26(4): 1208-1223, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31399635

RESUMEN

The extensive use of amphetamines to treat attention deficit hyperactivity disorders in children provides a compelling rationale for understanding the mechanisms of action of amphetamines and amphetamine-related drugs. We have previously shown that acute amphetamine (AMPH) regulates the trafficking of both dopamine and glutamate transporters in dopamine neurons by increasing activation of the small GTPase RhoA and of protein kinase A. Here we demonstrate that these downstream signaling events depend upon the direct activation of a trace amine-associated receptor, TAAR1, an intracellular G-protein coupled receptor (GPCR) that can be activated by amphetamines, trace amines, and biogenic amine metabolites. Using cell lines and mouse lines in which TAAR1 expression has been disrupted, we demonstrate that TAAR1 mediates the effects of AMPH on both RhoA and cAMP signaling. Inhibition of different Gα signaling pathways in cell lines and in vivo using small cell-permeable peptides confirms that the endogenous intracellular TAAR1 couples to G13 and to GS α-subunits to increase RhoA and PKA activity, respectively. Results from experiments with RhoA- and PKA-FRET sensors targeted to different subcellular compartments indicate that AMPH-elicited PKA activation occurs throughout the cell, whereas G13-mediated RhoA activation is concentrated near the endoplasmic reticulum. These observations define TAAR1 as an obligate intracellular target for amphetamines in dopamine neurons and support a model in which distinct pools of TAAR1 mediate the activation of signaling pathways in different compartments to regulate excitatory and dopaminergic neurotransmission.


Asunto(s)
Anfetamina , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Subunidades alfa de la Proteína de Unión al GTP Gs , Receptores Acoplados a Proteínas G , Anfetamina/farmacología , Animales , Dopamina , Neuronas Dopaminérgicas , Ratones , Transmisión Sináptica
9.
Mol Pharmacol ; 100(3): 217-223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34135098

RESUMEN

Regulators of G protein signaling (RGS) proteins modulate signaling by G protein-coupled receptors. Using a knock-in transgenic mouse model with a mutation in Gαo that does not bind RGS proteins (RGS-insensitive), we determined the effect of RGS proteins on presynaptic µ opioid receptor (MOR)-mediated inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). The MOR agonists [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and met-enkephalin (ME) inhibited evoked inhibitory postsynaptic currents (eIPSCs) in the RGS-insensitive mice compared with wild-type (WT) littermates, respectively. Fentanyl inhibited eIPSCs similarly in both WT and RGS-insensitive mice. There were no differences in opioid agonist inhibition of spontaneous GABA release between the genotypes. To further probe the mechanism underlying these differences between opioid inhibition of evoked and spontaneous GABA release, specific myristoylated Gα peptide inhibitors for Gαo1 and Gαi1-3 that block receptor-G protein interactions were used to test the preference of agonists for MOR-Gα complexes. The Gαo1 inhibitor reduced DAMGO inhibition of eIPSCs, but Gαi1-3 inhibitors had no effect. Both Gαo1 and Gαi1-3 inhibitors separately reduced fentanyl inhibition of eIPSCs but had no effects on ME inhibition. Gαi1-3 inhibitors blocked the inhibitory effects of ME and fentanyl on miniature postsynaptic current (mIPSC) frequency, but both Gαo1 and Gαi1-3 inhibitors were needed to block the effects of DAMGO. Finally, baclofen-mediated inhibition of GABA release is unaffected in the RGS-insensitive mice and in the presence of Gαo1 and Gαi1-3 inhibitor peptides, suggesting that GABAB receptor coupling to G proteins in vlPAG presynaptic terminals is different than MOR coupling. SIGNIFICANCE STATEMENT: Presynaptic µ opioid receptors (MORs) in the ventrolateral periaqueductal gray are critical for opioid analgesia and are negatively regulated by RGS proteins. These data in RGS-insensitive mice provide evidence that MOR agonists differ in preference for Gαo versus Gαi and regulation by RGS proteins in presynaptic terminals, providing a mechanism for functional selectivity between agonists. The results further define important differences in MOR and GABAB receptor coupling to G proteins that could be exploited for new pain therapies.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Terminales Presinápticos/fisiología , Receptores Opioides mu/fisiología , Ácido gamma-Aminobutírico/metabolismo , Analgésicos Opioides/farmacología , Animales , Baclofeno/farmacología , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Proteínas RGS/metabolismo , Receptores de GABA-B/metabolismo , Receptores Opioides mu/agonistas
10.
J Neurosci ; 38(41): 8737-8744, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150362

RESUMEN

Regulators of G-protein signaling (RGS) proteins negatively modulate presynaptic µ-opioid receptor inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). Paradoxically, we find that G-protein-coupled receptor (GPCR) activation of G-protein-gated inwardly rectifying K+ channels (GIRKs) in the vlPAG is reduced in an agonist- and receptor-dependent manner in transgenic knock-in mice of either sex expressing mutant RGS-insensitive Gαo proteins. µ-Opioid receptor agonist activation of GIRK currents was reduced for DAMGO and fentanyl but not for [Met5]-enkephalin acetate salt hydrate (ME) in the RGS-insensitive heterozygous (Het) mice compared with wild-type mice. The GABAB agonist baclofen-induced GIRK currents were also reduced in the Het mice. We confirmed the role of Gαo proteins in µ-opioid receptor and GABAB receptor signaling pathways in wild-type mice using myristoylated peptide inhibitors of Gαo1 and Gαi1-3 The results using these inhibitors indicate that receptor activation of GIRK channels is dependent on the preference of the agonist-stimulated receptor for Gαo versus that for Gαi. DAMGO and fentanyl-mediated GIRK currents were reduced in the presence of the Gαo1 inhibitor, but not the Gαi1-3 inhibitors. In contrast, the Gαo1 peptide inhibitor did not affect ME activation of GIRK currents, which is consistent with results in the Het mice, but the Gαi1-3 inhibitors significantly reduced ME-mediated GIRK currents. Finally, the reduction in GIRK activation in the Het mice plays a role in opioid- and baclofen-mediated spinal antinociception, but not supraspinal antinociception. Thus, our studies indicate that RGS proteins have multiple mechanisms of modulating GPCR signaling that produce negative and positive regulation of signaling depending on the effector.SIGNIFICANCE STATEMENT Regulators of G-protein signaling (RGS) proteins positively modulate GPCR coupling to GIRKs, and this coupling is critical for opioid- and baclofen-mediated spinal antinociception, whereas µ-opioid receptor-mediated supraspinal antinociception depends on presynaptic inhibition that is negatively regulated by RGS proteins. The identification of these opposite roles for RGS proteins has implications for signaling via other GPCRs.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Neuronas/metabolismo , Sustancia Gris Periacueductal/metabolismo , Proteínas RGS/metabolismo , Analgésicos/administración & dosificación , Animales , Baclofeno/administración & dosificación , Femenino , Agonistas de Receptores GABA-B/administración & dosificación , Locomoción/efectos de los fármacos , Masculino , Ratones Transgénicos , Neuronas/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Receptores de GABA-B/metabolismo , Receptores Opioides mu/agonistas
11.
J Neurosci ; 37(3): 626-636, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100744

RESUMEN

The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain. Endocannabinoids inhibit GABA release in the RVM, but it is not known whether this effect persists in chronic pain states. In the present studies, persistent inflammation induced by complete Freund's adjuvant (CFA) increased GABAergic miniature IPSCs (mIPSCs). Endocannabinoid activation of cannabinoid (CB1) receptors known to inhibit presynaptic GABA release was significantly reduced in the RVM of CFA-treated rats compared with naive rats. The reduction in CFA-treated rats correlated with decreased CB1 receptor protein expression and function in the RVM. Paradoxically, the nonselective CB1/CB2 receptor agonist WIN55212 inhibited GABAergic mIPSCs in both naive and CFA-treated rats. However, WIN55212 inhibition was reversed by the CB1 receptor antagonist rimonabant in naive rats but not in CFA-treated rats. WIN55212-mediated inhibition in CFA-treated rats was blocked by the CB2 receptor-selective antagonist SR144528, indicating that CB2 receptor function in the RVM is increased during persistent inflammation. Consistent with these results, CB2 receptor agonists AM1241 and GW405833 inhibited GABAergic mIPSC frequency only in CFA-treated rats, and the inhibition was reversed with SR144528. When administered alone, SR144528 and another CB2 receptor-selective antagonist AM630 increased mIPSC frequency in the RVM of CFA-treated rats, indicating that CB2 receptors are tonically activated by endocannabinoids. Our data provide evidence that CB2 receptor function emerges in the RVM in persistent inflammation and that selective CB2 receptor agonists may be useful for treatment of persistent inflammatory pain. SIGNIFICANCE STATEMENT: These studies demonstrate that endocannabinoid signaling to CB1 and CB2 receptors in adult rostral ventromedial medulla is altered in persistent inflammation. The emergence of CB2 receptor function in the rostral ventromedial medulla provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.


Asunto(s)
Bulbo Raquídeo/metabolismo , Dolor/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Benzoxazinas/farmacología , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Masculino , Bulbo Raquídeo/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Técnicas de Cultivo de Órganos , Dolor/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB2/antagonistas & inhibidores
12.
J Neurosci ; 36(5): 1669-81, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843648

RESUMEN

The ventrolateral periaqueductal gray (vlPAG) is a key structure in the descending pain modulatory circuit. Activation of the circuit occurs via disinhibition of GABAergic inputs onto vlPAG output neurons. In these studies, we tested the hypothesis that GABAergic inhibition is increased during persistent inflammation, dampening activation of the descending circuit from the vlPAG. Our results indicate that persistent inflammation induced by Complete Freund's adjuvant (CFA) modulates GABA signaling differently in male and female rats. CFA treatment results in increased presynaptic GABA release but decreased high-affinity tonic GABAA currents in female vlPAG neurons. These effects are not observed in males. The tonic currents in the vlPAG are dependent on GABA transporter activity and are modulated by agonists that activate GABAA receptors containing the δ subunit. The GABAA δ agonist THIP (gaboxadol) induced similar amplitude currents in naive and CFA-treated rats. In addition, a positive allosteric modulator of the GABAA δ subunit, DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide), increased tonic currents. These results indicate that GABAA δ receptors remain on the cell surface but are less active in CFA-treated female rats. In vivo behavior studies showed that morphine induced greater antinociception in CFA-treated females that was reversed with microinjections of DS2 directly into the vlPAG. DS2 did not affect morphine antinociception in naive or CFA-treated male rats. Together, these data indicate that sex-specific adaptations in GABAA receptor signaling modulate opioid analgesia in persistent inflammation. Antagonists of GABAA δ receptors may be a viable strategy for reducing pain associated with persistent inflammation, particularly in females. SIGNIFICANCE STATEMENT: These studies demonstrate that GABA signaling is modulated in the ventrolateral periaqueductal gray by persistent inflammation differently in female and male rats. Our results indicate that antagonists or negative allosteric modulators of GABAA δ receptors may be an effective strategy to alleviate chronic inflammatory pain and promote opioid antinociception, especially in females.


Asunto(s)
Dolor Crónico/fisiopatología , Sustancia Gris Periacueductal/fisiología , Receptores de GABA-A/fisiología , Caracteres Sexuales , Transducción de Señal/fisiología , Animales , Dolor Crónico/etiología , Relación Dosis-Respuesta a Droga , Femenino , Agonistas del GABA/farmacología , Calor/efectos adversos , Inflamación/patología , Inflamación/fisiopatología , Masculino , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
13.
Pharmacol Rev ; 65(1): 223-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23321159

RESUMEN

Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.


Asunto(s)
Receptores Opioides mu/fisiología , Analgésicos Opioides/farmacología , Animales , Tolerancia a Medicamentos , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Receptores Opioides mu/química
14.
J Physiol ; 593(1): 217-30, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25556797

RESUMEN

KEY POINTS: Electrical stimulation of the rostral ventromedial medulla (RVM) facilitates pain behaviours in neonates but inhibits these behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. We optimized whole-cell patch-clamp recordings for RVM neurons in animals older than postnatal day 30 and compared the results to postnatal day 10-21 animals. Our results demonstrate that the γ-aminobutyric acid (GABA) release is lower and opioid effects are more evident in adult rats compared to early postnatal rats. A cannabinoid receptor antagonist significantly increased GABA release in mature but not in immature RVM neurons suggesting the presence of local endocannabinoid tone in mature RVM. Neurons in the rostral ventromedial medulla (RVM) play critical and complex roles in pain modulation. Recent studies have shown that electrical stimulation of the RVM produces pain facilitation in young animals (postnatal (PN) day < 21) but predominantly inhibits pain behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. This is in part because whole-cell patch-clamp studies in RVM to date have been in young (PN day < 18) animals because the organization and abundance of myelinated fibres in this region make the RVM a challenging area for whole-cell patch-clamp recording in adults. Several neurotransmitter systems, including GABAergic neurotransmission, undergo developmental changes that mature by PN day 21. Thus, we focused on optimizing whole-cell patch-clamp recordings for RVM neurons in animals older than PN day 30 and compared the results to animals at PN day 10-21. Our results demonstrate that the probability of GABA release is lower and that opioid and endocannabinoid effects are more evident in adult rats (mature) compared to early postnatal (immature) rats. Differences in these properties of RVM neurons may contribute to the developmental changes in descending control of pain from the RVM to the spinal cord.


Asunto(s)
Envejecimiento/fisiología , Bulbo Raquídeo/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción , Analgésicos Opioides/farmacología , Animales , Endocannabinoides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Masculino , Neuronas/fisiología , Péptidos Opioides/farmacología , Compuestos Orgánicos/farmacología , Ratas , Ratas Sprague-Dawley
15.
J Neurosci ; 33(10): 4369-77, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467353

RESUMEN

Regulator of G-protein signaling (RGS) proteins classically function as negative modulators of G-protein-coupled receptor signaling. In vitro, RGS proteins have been shown to inhibit signaling by agonists at the µ-opioid receptor, including morphine. The goal of the present study was to evaluate the contribution of endogenous RGS proteins to the antinociceptive effects of morphine and other opioid agonists. To do this, a knock-in mouse that expresses an RGS-insensitive (RGSi) mutant Gαo protein, Gαo(G184S) (Gαo RGSi), was evaluated for morphine or methadone antinociception in response to noxious thermal stimuli. Mice expressing Gαo RGSi subunits exhibited a naltrexone-sensitive enhancement of baseline latency in both the hot-plate and warm-water tail-withdrawal tests. In the hot-plate test, a measure of supraspinal nociception, morphine antinociception was increased, and this was associated with an increased ability of opioids to inhibit presynaptic GABA neurotransmission in the periaqueductal gray. In contrast, antinociception produced by either morphine or methadone was reduced in the tail-withdrawal test, a measure of spinal nociception. In whole-brain and spinal cord homogenates from mice expressing Gαo RGSi subunits, there was a small loss of Gαo expression and an accompanying decrease in basal G-protein activity. Our results strongly support a role for RGS proteins as negative regulators of opioid supraspinal antinociception and also reveal a potential novel function of RGS proteins as positive regulators of opioid spinal antinociceptive pathways.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hiperalgesia/tratamiento farmacológico , Morfina/uso terapéutico , Proteínas RGS/metabolismo , Analgésicos Opioides/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Diprenorfina/farmacocinética , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacocinética , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Calor/efectos adversos , Humanos , Hiperalgesia/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Isótopos/farmacocinética , Masculino , Metadona/farmacología , Metadona/uso terapéutico , Ratones , Ratones Transgénicos , Morfina/farmacología , Mutación , Naloxona/farmacología , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oligopéptidos/farmacología , Dimensión del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Toxina del Pertussis/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas RGS/genética , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Ácido gamma-Aminobutírico/metabolismo
16.
Synapse ; 67(2): 94-108, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23152302

RESUMEN

The periaqueductal gray (PAG) is a critical brain region involved in opioid analgesia and provides efferents to descending pathways that modulate nociception. In addition, the PAG contains ascending pathways to regions involved in the regulation of reward, including the substantia nigra (SN) and the ventral tegmental area (VTA). SN and VTA contain dopaminergic neurons that are critical for the maintenance of positive reinforcement. Interestingly, the PAG is also reported to contain a population of dopaminergic neurons. In this study, the distribution of catecholaminergic neurons within the ventrolateral (vl) PAG was examined using immunocytochemical methods. In addition, the catecholaminergic PAG neurons were examined to determine whether these neurons are integrated into ascending (VTA, SN) and descending rostral ventral medulla (RVM) efferent pathways from this region. The immunocytochemical analysis determined that catecholaminergic neurons in the PAG are both dopaminergic and noradrenergic and these neurons have a distinct rostrocaudal distribution within the ventrolateral column of PAG. Dopaminergic neurons were concentrated rostrally and were significantly smaller than noradrenergic neurons. Combined immunocytochemistry and tract tracing methods revealed that catecholaminergic neurons are distinct from, but closely associated with, both ascending and descending efferent projection neurons. Finally, by electron microscopy, catecholaminergic neurons showed close dendritic appositions with other neurons in PAG, suggesting a possible nonsynaptic mechanism for regulation of PAG output by these neurons. In conclusion, our data indicate that there are two populations of catecholaminergic neurons in the vlPAG that form dendritic associations with both ascending and descending efferents suggesting a possible nonsynaptic modulation of vlPAG neurons.


Asunto(s)
Catecolaminas/metabolismo , Vías Eferentes/metabolismo , Neuronas/metabolismo , Sustancia Gris Periacueductal/metabolismo , Animales , Vías Eferentes/ultraestructura , Masculino , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/ultraestructura , Neuronas/ultraestructura , Sustancia Gris Periacueductal/ultraestructura , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/ultraestructura
17.
Neuropharmacology ; 226: 109408, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584882

RESUMEN

Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".


Asunto(s)
Terminales Presinápticos , Receptores Opioides , Humanos , Receptores Opioides/metabolismo , Terminales Presinápticos/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Dolor/metabolismo , Receptores Opioides mu/metabolismo
18.
Front Syst Neurosci ; 16: 963812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045708

RESUMEN

The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.

19.
Front Cardiovasc Med ; 9: 842656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224065

RESUMEN

The sympathetic nervous system plays a critical role in regulating many autonomic functions, including cardiac rhythm. The postganglionic neurons in the sympathetic chain ganglia are essential components that relay sympathetic signals to target tissues and disruption of their activity leads to poor health outcomes. Despite this importance, the neurocircuitry within sympathetic ganglia is poorly understood. Canonically, postganglionic sympathetic neurons are thought to simply be activated by monosynaptic inputs from preganglionic cholinergic neurons of the intermediolateral cell columns of the spinal cord. Early electrophysiological studies of sympathetic ganglia where the peripheral nerve trunks were electrically stimulated identified excitatory cholinergic synaptic events in addition to retrograde action potentials, leading some to speculate that excitatory collateral projections are present. However, this seemed unlikely since sympathetic postganglionic neurons were known to synthesize and release norepinephrine and expression of dual neurochemical phenotypes had not been well recognized. In vitro studies clearly established the capacity of cultured sympathetic neurons to express and release acetylcholine and norepinephrine throughout development and even in pathophysiological conditions. Given this insight, we believe that the canonical view of ganglionic transmission needs to be reevaluated and may provide a mechanistic understanding of autonomic imbalance in disease. Further studies likely will require genetic models manipulating neurochemical phenotypes within sympathetic ganglia to resolve the function of cholinergic collateral projections between postganglionic neurons. In this perspective article, we will discuss the evidence for collateral projections in sympathetic ganglia, determine if current laboratory techniques could address these questions, and discuss potential obstacles and caveats.

20.
Clin Transl Gastroenterol ; 13(8): e00516, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854467

RESUMEN

INTRODUCTION: Pancreatic cancer (PC) screening recommendations have been based on studies performed solely at high-volume academic centers. To make PC screening more widely available, community-based efforts are essential. We implemented a prospective PC screening study in the community of Fairfield County, CT, and report our early safety and efficacy results. METHODS: Eligible individuals were enrolled into an investigator-initiated study and underwent a baseline and 3 annual magnetic resonance imagings/magnetic resonance cholangiopancreatographies (MRIs/MRCPs) with gadolinium, biannual blood donations for biobanking, and assessments for anxiety and depression. All MRIs were presented at a multidisciplinary board to determine whether further investigation was warranted. RESULTS: Seventy-five individuals have been enrolled and 201 MRIs performed over a 2.6-year average length of follow-up. Abnormal pancreatic findings (predominantly small cysts) were detected in 58.7% of the participants. Among these, 6.7% underwent endoscopic ultrasound, with 1 case complicated by postprocedural pancreatitis. One surgical resection was performed on a 4.7-cm intraductal papillary mucinous neoplasm with a focus on low-grade pancreatic intraepithelial neoplasia. One incidental finding of fibrosing mediastinitis was detected. Anxiety and depression scores decreased over the course of this study from 21.4% to 5.4% and 10.7% to 3.6%, respectively. DISCUSSION: This preliminary report supports the feasibility of performing MRI/magnetic resonance cholangiopancreatographies-based PC screening as part of a clinical trial in a community setting. A longer follow-up is needed to better assess safety and efficacy. To the best of our knowledge, this is the first report from a community-based PC screening effort ( clinicaltrials.gov ID: NCT03250078).


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pancreáticas , Bancos de Muestras Biológicas , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pancreáticas/patología , Estudios Prospectivos , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA