Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Biol Sci ; 290(1990): 20222181, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629105

RESUMEN

The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.


Asunto(s)
Ecosistema , Insectos , Animales , Cambio Climático , Estaciones del Año , Temperatura , Aves , Mamíferos
2.
Proc Natl Acad Sci U S A ; 117(26): 15112-15122, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541035

RESUMEN

Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds' extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.


Asunto(s)
Aves/fisiología , Percepción de Color/fisiología , Visión de Colores/fisiología , Animales , Estimulación Luminosa , Retina
3.
Proc Biol Sci ; 289(1973): 20212697, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440209

RESUMEN

Life-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits. We found that comb-building cavity nesters and larger bodied bees declined in relative abundance with increasing temperatures, while smaller, soil-nesting bees increased. Further, bees with narrower diet breadths increased in relative abundance with decreased rainfall. Finally, reduced snowpack was associated with reduced relative abundance of bees that overwintered as prepupae whereas bees that overwintered as adults increased in relative abundance, suggesting that overwintering conditions might affect body size, lipid content and overwintering survival. Taken together, our results show how climate change may reshape bee pollinator communities, with bees with certain traits increasing in abundance and others declining, potentially leading to novel plant-pollinator interactions and changes in plant reproduction.


Asunto(s)
Cambio Climático , Rasgos de la Historia de Vida , Animales , Abejas , Fenotipo , Polinización/fisiología , Reproducción , Temperatura
4.
Glob Chang Biol ; 27(9): 1927-1941, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33586192

RESUMEN

Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.


Asunto(s)
Cambio Climático , Plantas , Dinámica Poblacional , Estaciones del Año
5.
Ecol Lett ; 23(11): 1589-1598, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32812695

RESUMEN

Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant-pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well-understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time-series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community-wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long-term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.


Asunto(s)
Cambio Climático , Flores , Animales , Abejas , Colorado , Estaciones del Año , Temperatura
6.
Glob Chang Biol ; 25(10): 3516-3527, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31293015

RESUMEN

The global increase in the proportion of land cultivated with pollinator-dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive monocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator-dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area of pollinator-dependent crops has indeed been associated with an increase in agricultural diversity, measured here as crop diversity, at the global, regional, and country scales for the period 1961-2016. Globally, results show a relatively weak and decelerating rise in agricultural diversity over time that was largely decoupled from the strong and continually increasing trend in agricultural dependency on pollinators. At regional and country levels, there was no consistent relationship between temporal changes in pollinator dependence and crop diversification. Instead, our results show heterogeneous responses in which increasing pollinator dependence for some countries and regions has been associated with either an increase or a decrease in agricultural diversity. Particularly worrisome is a rapid expansion of pollinator-dependent oilseed crops in several countries of the Americas and Asia that has resulted in a decrease in agricultural diversity. In these regions, reliance on pollinators is increasing, yet agricultural practices that undermine pollination services are expanding. Our analysis has thereby identified world regions of particular concern where environmentally damaging practices associated with large-scale, industrial agriculture threaten key ecosystem services that underlie productivity, in addition to other benefits provided by biodiversity.


Asunto(s)
Agricultura , Ecosistema , Animales , Asia , Productos Agrícolas , Polinización
7.
New Phytol ; 218(2): 517-529, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29451307

RESUMEN

Climate change has induced pronounced shifts in the reproductive phenology of plants, yet we know little about which environmental factors contribute to interspecific variation in responses and their effects on fitness. We integrate data from a 43 yr record of first flowering for six species in subalpine Colorado meadows with a 3 yr snow manipulation experiment on the perennial forb Boechera stricta (Brassicaceae) from the same site. We analyze shifts in the onset of flowering in relation to environmental drivers known to influence phenology: the timing of snowmelt, the accumulation of growing degree days, and photoperiod. Variation in responses to climate change depended on the sequence in which species flowered, with early-flowering species reproducing faster, at a lower heat sum, and under increasingly disparate photoperiods relative to later-flowering species. Early snow-removal treatments confirm that the timing of snowmelt governs observed trends in flowering phenology of B. stricta and that climate change can reduce the probability of flowering, thereby depressing fitness. Our findings suggest that climate change is decoupling historical combinations of photoperiod and temperature and outpacing phenological changes for our focal species. Accurate predictions of biological responses to climate change require a thorough understanding of the factors driving shifts in phenology.


Asunto(s)
Brassicaceae/fisiología , Cambio Climático , Ambiente , Flores/fisiología , Estaciones del Año , Nieve , Factores de Tiempo
8.
Glob Chang Biol ; 24(2): 848-857, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28805338

RESUMEN

Frost is an important episodic event that damages plant tissues through the formation of ice crystals at or below freezing temperatures. In montane regions, where climate change is expected to cause earlier snow melt but may not change the last frost-free day of the year, plants that bud earlier might be directly impacted by frost through damage to flower buds and reproductive structures. However, the indirect effects of frost mediated through changes in plant-pollinator interactions have rarely been explored. We examined the direct and pollinator-mediated indirect effects of frost on three wildflower species in southwestern Colorado, USA, Delphinium barbeyi (Ranunculaceae), Erigeron speciosus (Asteraceae), and Polemonium foliosissimum (Polemoniaceae), by simulating moderate (-1 to -5°C) frost events in early spring in plants in situ. Subsequently, we measured plant growth, and upon flowering measured flower morphology and phenology. Throughout the flowering season, we monitored pollinator visitation and collected seeds to measure plant reproduction. We found that frost had species-specific direct and indirect effects. Frost had direct effects on two of the three species. Frost significantly reduced flower size, total flowers produced, and seed production of Erigeron. Furthermore, frost reduced aboveground plant survival and seed production for Polemonium. However, we found no direct effects of frost on Delphinium. When we considered the indirect impacts of frost mediated through changes in pollinator visitation, one species, Erigeron, incurred indirect, negative effects of frost on plant reproduction through changes in floral traits and pollinator visitation, along with direct effects. Overall, we found that flowering plants exhibited species-specific direct and pollinator-mediated indirect responses to frost, thus suggesting that frost may play an important role in affecting plant communities under climate change.


Asunto(s)
Congelación , Magnoliopsida/fisiología , Desarrollo de la Planta/fisiología , Polinización/fisiología , Animales , Cambio Climático , Colorado , Flores/crecimiento & desarrollo , Magnoliopsida/clasificación , Reproducción/fisiología , Estaciones del Año , Semillas/fisiología
9.
Ecol Lett ; 20(12): 1507-1515, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124863

RESUMEN

Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change.


Asunto(s)
Abejas , Cambio Climático , Ecosistema , Animales , Reproducción , Especificidad de la Especie
10.
Ecology ; 98(3): 647-655, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984645

RESUMEN

Time series have played a critical role in documenting how phenology responds to climate change. However, regressing phenological responses against climatic predictors involves the risk of finding potentially spurious climate-phenology relationships simply because both variables also change across years. Detrending by year is a way to address this issue. Additionally, detrending isolates interannual variation in phenology and climate, so that detrended climate-phenology relationships can represent statistical evidence of phenotypic plasticity. Using two flowering phenology time series from Colorado, USA and Greenland, we detrend flowering date and two climate predictors known to be important in these ecosystems: temperature and snowmelt date. In Colorado, all climate-phenology relationships persist after detrending. In Greenland, 75% of the temperature-phenology relationships disappear after detrending (three of four species). At both sites, the relationships that persist after detrending suggest that plasticity is a major component of sensitivity of flowering phenology to climate. Finally, simulations that created different strengths of correlations among year, climate, and phenology provide broader support for our two empirical case studies. This study highlights the utility of detrending to determine whether phenology is related to a climate variable in observational data sets. Applying this as a best practice will increase our understanding of phenological responses to climatic variation and change.


Asunto(s)
Cambio Climático , Fenotipo , Colorado , Ecosistema , Flores , Groenlandia , Estaciones del Año , Temperatura
11.
Glob Chang Biol ; 23(5): 1783-1791, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27550575

RESUMEN

Shifts in the timing of life history events have become an important source of information about how organisms are responding to climate change. Phenological data have generally been treated as purely temporal, with scant attention to the inherent spatial aspects of such data. However, phenological data are tied to a specific location, and considerations of sampling design, both over space and through time, can critically affect the patterns that emerge. Focusing on flowering phenology, we describe how purely spatial shifts, such as adding new study plots, or the colonization of a study plot by a new species, can masquerade as temporal shifts. Such shifts can look like responses to climate change but are not. Furthermore, the same aggregate phenological curves can be composed of individuals with either very different or very similar phenologies. We conclude with a set of recommendations to avoid ambiguities arising from the spatiotemporal duality of phenological data.


Asunto(s)
Cambio Climático , Plantas , Flores , Reproducción , Estaciones del Año
12.
Ann Bot ; 119(6): 1053-1059, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158409

RESUMEN

Background and Aims: It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Methods: Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Key Results: Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Conclusions: Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition.


Asunto(s)
Abejas/fisiología , Conducta Alimentaria , Néctar de las Plantas/metabolismo , Polinización , Salvia/fisiología , Animales , China , Cadena Alimentaria , Reproducción
13.
Oecologia ; 185(2): 181-190, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28891026

RESUMEN

Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Herbivoria , Animales , Hormigas , Áfidos , Calor/efectos adversos , Plantas , Densidad de Población , Simbiosis
14.
Proc Natl Acad Sci U S A ; 111(13): 4916-21, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639544

RESUMEN

Phenology--the timing of biological events--is highly sensitive to climate change. However, our general understanding of how phenology responds to climate change is based almost solely on incomplete assessments of phenology (such as first date of flowering) rather than on entire phenological distributions. Using a uniquely comprehensive 39-y flowering phenology dataset from the Colorado Rocky Mountains that contains more than 2 million flower counts, we reveal a diversity of species-level phenological shifts that bring into question the accuracy of previous estimates of long-term phenological change. For 60 species, we show that first, peak, and last flowering rarely shift uniformly and instead usually shift independently of one another, resulting in a diversity of phenological changes through time. Shifts in the timing of first flowering on average overestimate the magnitude of shifts in the timing of peak flowering, fail to predict shifts in the timing of last flowering, and underrepresent the number of species changing phenology in this plant community. Ultimately, this diversity of species-level phenological shifts contributes to altered coflowering patterns within the community, a redistribution of floral abundance across the season, and an expansion of the flowering season by more than I mo during the course of our study period. These results demonstrate the substantial reshaping of ecological communities that can be attributed to shifts in phenology.


Asunto(s)
Ecosistema , Flores/fisiología , Fenómenos Fisiológicos de las Plantas , Colorado , Especificidad de la Especie , Factores de Tiempo
15.
Glob Chang Biol ; 22(5): 1779-93, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26833694

RESUMEN

Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the success of early-flowering plants not through plant-pollinator mismatch but through the direct impacts of extreme environmental conditions.


Asunto(s)
Polinización , Portulacaceae/fisiología , Cambio Climático , Colorado , Flores/crecimiento & desarrollo , Flores/fisiología , Portulacaceae/crecimiento & desarrollo , Reproducción , Estaciones del Año
16.
Ecology ; 96(2): 355-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26240857

RESUMEN

Phylogenetic relationships may underlie species-specific phenological sensitivities to abiotic variation and may help to predict these responses to climate change. Although shared evolutionary history may mediate both phenology and phenological sensitivity to abiotic variation, few studies have explicitly investigated whether this is the case. We explore phylogenetic signal in flowering phenology and in phenological sensitivity to temperature and snowmelt using a 39-year record of flowering from the Colorado Rocky Mountains, USA that includes dates of first, peak, and last flowering, and flowering duration for 60 plant species in a subalpine plant community. Consistent with other studies, we found evidence in support of phylogenetic signal in first flowering date. However, the strength and significance of that signal were inconsistent across other measures of flowering in this plant community: peak flowering date exhibited the strongest phylogenetic signal, followed by first flowering date; last flowering date and duration of flowering exhibited patterns indistinguishable from random trait evolution. In contrast to first and peak flowering date, phenological sensitivities of all flowering measures to temperature and snowmelt did not exhibit a phylogenetic signal. These findings show that within ecological communities, phylogenetic signal in phenology does not necessarily imply phylogenetic signal in phenological sensitivities to abiotic variation.


Asunto(s)
Cambio Climático , Flores/crecimiento & desarrollo , Periodicidad , Filogenia , Plantas/clasificación , Plantas/genética , Temperatura
17.
Glob Chang Biol ; 21(10): 3635-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25906987

RESUMEN

Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth and carbon balance responses to global climate change on the world's roof should integrate both temperature and snowfall variations.


Asunto(s)
Cambio Climático , Magnoliopsida/crecimiento & desarrollo , Nieve , Altitud , China , Ecosistema , Temperatura
18.
Am J Bot ; 100(3): 519-25, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23425561

RESUMEN

PREMISE OF THE STUDY: Climate change threatens to alter the timing and magnitude of abiotic cues that synchronize mast flowering, such as temperature and precipitation. Climate change may therefore alter the frequency of masting, in turn affecting species in the community that use pulsed resources. • METHODS: We used 29-yr (1984-2012) records of climate and flowering to investigate proximate flowering cues for the clonal, mast-flowering herb Veratrum tenuipetalum. Because clonal reproduction is tied to flowering in Veratrum, we used a parallel record of ramet abundance to examine the effects of masting on long-term ramet abundance. • KEY RESULTS: Cool summer temperatures 2 years before flowering were associated with a higher percentage of flowering in Veratrum populations, consistent with its life history. Ramet abundance increased by 9.5% ± 5.6% on average following mast years compared to an average loss of 0.73% ± 1.1% in nonmast years, and ramet abundance increased over the time frame of our records. • CONCLUSIONS: Ramet abundance has increased over the time frame of our records mainly because of clonal reproduction in masting years. If summer temperatures continue to increase at our site and Veratrum does not alter its climate thresholds, we predict that masting will become less frequent in this species, with consequent reduction in opportunities for both sexual and clonal reproduction.


Asunto(s)
Cambio Climático , Ecosistema , Flores/fisiología , Veratrum/fisiología , Modelos Lineales , Raíces de Plantas/fisiología , Temperatura , Factores de Tiempo , Estados Unidos
19.
Am J Bot ; 100(7): 1398-406, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23660568

RESUMEN

PREMISE OF THE STUDY: Plants are flowering earlier in response to climate change. However, substantial interannual variation in phenology may make it difficult to discern and compare long-term trends. In addition to providing insight on data requirements for discerning such trends, phenological shifts within subsets of long-term records will provide insight into the mechanisms driving changes in flowering over longer time scales. METHODS: To examine variation in flowering shifts among temporal subsets of long-term records, we used two data sets of flowering phenology from snow-dominated habitats: subalpine meadow in Gothic, Colorado, USA (38 yr), and arctic tundra in Zackenberg, Greenland (16 yr). Shifts in flowering time were calculated as 10-yr moving averages for onset, peak, and end of flowering. KEY RESULTS: Flowering advanced over the course of the entire time series at both sites. Flowering shifts at Gothic were variable, with some 10-yr time frames showing significant delays and others significant advancements. Early-flowering species were more responsive than later-flowering species, while the opposite was true at Zackenberg. Flowering shifts at Zackenberg were less variable, with advanced flowering across all 10-yr time frames. At both sites, long-term advancement seemed to be primarily driven by strong advancements in flowering in the 1990s and early 2000s. CONCLUSIONS: Analysis of long-term trends can mask substantial variation in phenological shifts through time. This variation in the direction and magnitude of phenological shifts has implications for the evolution of flowering time and for interspecific interactions with flowering plants and can provide more detailed insights into the dynamics of phenological responses to climate change.


Asunto(s)
Cambio Climático , Ecosistema , Flores/fisiología , Magnoliopsida/fisiología , Periodicidad , Colorado , Groenlandia , Factores de Tiempo
20.
Am J Bot ; 100(7): 1381-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23752756

RESUMEN

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.


Asunto(s)
Cambio Climático , Flores/fisiología , Magnoliopsida/clasificación , Fenómenos Fisiológicos de las Plantas , Especificidad de la Especie , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA