Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 320(2): H740-H761, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337961

RESUMEN

Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Cognición , Disfunción Cognitiva/fisiopatología , Endotelio Vascular/fisiopatología , Microvasos/fisiopatología , Acoplamiento Neurovascular , Obesidad/fisiopatología , Factores de Edad , Anciano , Animales , Barrera Hematoencefálica/metabolismo , Envejecimiento Cognitivo , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/psicología , Endotelio Vascular/metabolismo , Femenino , Humanos , Masculino , Microcirculación , Microvasos/metabolismo , Obesidad/epidemiología , Obesidad/psicología , Obesidad/terapia , Medición de Riesgo , Factores de Riesgo
2.
Arterioscler Thromb Vasc Biol ; 33(4): 752-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23329133

RESUMEN

OBJECTIVE: Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochondrial depolarization by mitochondrial ATP-sensitive potassium channel activators, BMS-191095 (BMS) and diazoxide, on endothelium-dependent vasodilation. APPROACH AND RESULTS: Diameter studies in isolated rat cerebral arteries showed BMS- and diazoxide-induced vasodilations that were diminished by endothelial denudation. Mitochondrial depolarization-induced vasodilation was reduced by inhibition of mitochondrial ATP-sensitive potassium channels, phosphoinositide-3 kinase, or nitric oxide synthase. Scavenging of reactive oxygen species, however, diminished vasodilation induced by diazoxide, but not by BMS. Fluorescence studies in cultured rat brain microvascular endothelial cells showed that BMS elicited mitochondrial depolarization and enhanced nitric oxide production; diazoxide exhibited largely similar effects, but unlike BMS, increased mitochondrial reactive oxygen species production. Measurements of intracellular calcium ([Ca(2+)]i) in cultured rat brain microvascular endothelial cells and arteries showed that both diazoxide and BMS increased endothelial [Ca(2+)]i. Western blot analyses revealed increased phosphorylation of protein kinase B and endothelial nitric oxide synthase (eNOS) by BMS and diazoxide. Increased phosphorylation of eNOS by diazoxide was abolished by phosphoinositide-3 kinase inhibition. Electron spin resonance spectroscopy confirmed vascular nitric oxide generation in response to diazoxide and BMS. CONCLUSIONS: Pharmacological depolarization of endothelial mitochondria promotes activation of eNOS by dual pathways involving increased [Ca(2+)]i as well as by phosphoinositide-3 kinase-protein kinase B-induced eNOS phosphorylation. Both mitochondrial reactive oxygen species-dependent and -independent mechanisms mediate activation of eNOS by endothelial mitochondrial depolarization.


Asunto(s)
Arterias Cerebrales/metabolismo , Circulación Cerebrovascular , Células Endoteliales/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Canales de Potasio/metabolismo , Vasodilatación , Animales , Benzopiranos/farmacología , Western Blotting , Calcio/metabolismo , Células Cultivadas , Arterias Cerebrales/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Diazóxido/farmacología , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Células Endoteliales/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Imidazoles/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
3.
Commun Biol ; 7(1): 287, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459113

RESUMEN

Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.


Asunto(s)
Neuronas Adrenérgicas , Hiperemia , Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Serotonina , Neurotransmisores , Norepinefrina , Transducción de Señal
4.
Res Sq ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502946

RESUMEN

Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.

5.
Microcirculation ; 19(8): 749-56, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22845548

RESUMEN

OBJECTIVE: Previously, we have shown that IR impairs the vascular reactivity of the major cerebral arteries of ZO rats prior to the occurrence of Type-II diabetes mellitus. However, the functional state of the microcirculation in the cerebral cortex is still being explored. METHODS: We tested the local CoBF responses of 11-13-week-old ZO (n = 31) and control ZL (n = 32) rats to several stimuli measured by LDF using a closed cranial window setup. RESULTS: The topical application of 1-100 µm bradykinin elicited the same degree of CoBF elevation in both ZL and ZO groups. There was no significant difference in the incidence, latency, and amplitude of the NMDA-induced CSD-related hyperemia between the ZO and ZL groups. Hypercapnic CoBF response to 5% carbon-dioxide ventilation did not significantly change in the ZO compared with the ZL. Topical bicuculline-induced cortical seizure was accompanied by the same increase of CoBF in both the ZO and ZL at all bicuculline doses. CONCLUSIONS: CoBF responses of the microcirculation are preserved in the early period of the metabolic syndrome, which creates an opportunity for intervention to prevent and restore the function of the major cerebral vascular beds.


Asunto(s)
Bicuculina/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Convulsivantes/farmacología , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina , Microcirculación/efectos de los fármacos , Animales , Bicuculina/efectos adversos , Convulsivantes/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Masculino , Ratas , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología
6.
Nat Commun ; 13(1): 7872, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550102

RESUMEN

Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca2+ signaling in vivo by expressing a plasma membrane Ca2+ ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca2+ using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca2+ is to amplify functional hyperemia when neuronal activation is prolonged.


Asunto(s)
Hiperemia , Neocórtex , Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Vigilia , Arteriolas , Astrocitos/metabolismo , Circulación Cerebrovascular/fisiología
7.
Commun Biol ; 5(1): 183, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233070

RESUMEN

Ryanodine receptor 2 (RyR2) is abundantly expressed in the heart and brain. Mutations in RyR2 are associated with both cardiac arrhythmias and intellectual disability. While the mechanisms of RyR2-linked arrhythmias are well characterized, little is known about the mechanism underlying RyR2-associated intellectual disability. Here, we employed a mouse model expressing a green fluorescent protein (GFP)-tagged RyR2 and a specific GFP probe to determine the subcellular localization of RyR2 in hippocampus. GFP-RyR2 was predominantly detected in the soma and dendrites, but not the dendritic spines of CA1 pyramidal neurons or dentate gyrus granular neurons. GFP-RyR2 was also detected within the mossy fibers in the stratum lucidum of CA3, but not in the presynaptic terminals of CA1 neurons. An arrhythmogenic RyR2-R4496C+/- mutation downregulated the A-type K+ current and increased membrane excitability, but had little effect on the afterhyperpolarization current or presynaptic facilitation of CA1 neurons. The RyR2-R4496C+/- mutation also impaired hippocampal long-term potentiation, learning, and memory. These data reveal the precise subcellular distribution of hippocampal RyR2 and its important role in neuronal excitability, learning, and memory.


Asunto(s)
Neuronas , Canal Liberador de Calcio Receptor de Rianodina , Animales , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Células Piramidales/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 300(6): H2080-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421821

RESUMEN

Insulin resistance (IR) impairs cerebrovascular responses to several stimuli in Zucker obese (ZO) rats. However, cerebral artery responses after subarachnoid hemorrhage (SAH) have not been described in IR. We hypothesized that IR worsens vascular reactions after a mild SAH. Hemolyzed blood (300 µl) or saline was infused (10 µl/min) into the cisterna magna of 11-13-wk-old ZO (n = 25) and Zucker lean (ZL) rats (n = 25). One day later, dilator responses of the basilar artery (BA) and its side branch (BA-Br) to acetylcholine (ACh, 10(-6) M), cromakalim (10(-7) M, 10(-6) M), and sodium nitroprusside (10(-7) M) were recorded with intravital videomicroscopy. The baseline diameter of the BA was increased both in the ZO and ZL rats 24 h after the hemolysate injection. Saline-injected ZO animals showed reduced dilation to ACh (BA = 9 ± 3 vs. 22 ± 4%; and BA-Br = 23 ± 5 vs. 37 ± 7%) compared with ZL rats. Hemolysate injection blunted the response to ACh in both the ZO (BA = 4 ± 2%; and BA-Br = 12 ± 3%) and ZL (BA = 7 ± 2%; and BA-Br = 11 ± 3%) rats. Cromakalim (10(-6) M)-induced dilation was significantly reduced in the hemolysate-injected ZO animals compared with the saline control (BA = 13 ± 3 vs. 26 ± 5%; and BA-Br = 28 ± 8 vs. 44 ± 9%) and in the hemolysate-injected ZL rats compared with their saline control (BA = 24 ± 4 vs. 32 ± 4%; but not BA-Br = 39 ± 6 vs. 59 ± 9%). No significant difference in sodium nitroprusside reactivity was observed. Western blot analysis of the BA showed a lower baseline level of neuronal nitric oxide synthase expression and an enhanced cyclooxygenase-2 level in the hemolysate-injected ZO animals. In summary, cerebrovascular reactivity to both endothelium-dependent and -independent stimuli is severely compromised by SAH in IR animals.


Asunto(s)
Circulación Cerebrovascular/fisiología , Resistencia a la Insulina/fisiología , Obesidad/fisiopatología , Hemorragia Subaracnoidea/fisiopatología , Vasoespasmo Intracraneal/fisiopatología , Acetilcolina/farmacología , Animales , Circulación Cerebrovascular/efectos de los fármacos , Cromakalim/farmacología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Nitroprusiato/farmacología , Obesidad/metabolismo , Ratas , Ratas Zucker , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
9.
Geroscience ; 43(1): 197-212, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33094399

RESUMEN

Whole brain irradiation (WBI) therapy is an important treatment for brain metastases and potential microscopic malignancies. WBI promotes progressive cognitive dysfunction in over half of surviving patients, yet, the underlying mechanisms remain obscure. Astrocytes play critical roles in the regulation of neuronal activity, brain metabolism, and cerebral blood flow, and while neurons are considered radioresistant, astrocytes are sensitive to γ-irradiation. Hallmarks of astrocyte function are the ability to generate stimulus-induced intercellular Ca2+ signals and to move metabolic substrates through the connected astrocyte network. We tested the hypothesis that WBI-induced cognitive impairment associates with persistent impairment of astrocytic Ca2+ signaling and/or gap junctional coupling. Mice were subjected to a clinically relevant protocol of fractionated WBI, and 12 to 15 months after irradiation, we confirmed persistent cognitive impairment compared to controls. To test the integrity of astrocyte-to-astrocyte gap junctional coupling postWBI, astrocytes were loaded with Alexa-488-hydrazide by patch-based dye infusion, and the increase of fluorescence signal in neighboring astrocyte cell bodies was assessed with 2-photon microscopy in acute slices of the sensory-motor cortex. We found that WBI did not affect astrocyte-to-astrocyte gap junctional coupling. Astrocytic Ca2+ responses induced by bath administration of phenylephrine (detected with Rhod-2/AM) were also unaltered by WBI. However, an electrical stimulation protocol used in long-term potentiation (theta burst), revealed attenuated astrocyte Ca2+ responses in the astrocyte arbor and soma in WBI. Our data show that WBI causes a long-lasting decrement in synaptic-evoked astrocyte Ca2+ signals 12-15 months postirradiation, which may be an important contributor to cognitive decline seen after WBI.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Animales , Encéfalo , Señalización del Calcio , Circulación Cerebrovascular , Humanos , Ratones
10.
Cell Rep ; 36(5): 109405, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348138

RESUMEN

Very-low-frequency oscillations in microvascular diameter cause fluctuations in oxygen delivery that are important for fueling the brain and for functional imaging. However, little is known about how the brain regulates ongoing oscillations in cerebral blood flow. In mouse and rat cortical brain slice arterioles, we find that selectively enhancing tone is sufficient to recruit a TRPV4-mediated Ca2+ elevation in adjacent astrocyte endfeet. This endfoot Ca2+ signal triggers COX-1-mediated "feedback vasodilators" that limit the extent of evoked vasoconstriction, as well as constrain fictive vasomotion in slices. Astrocyte-Ptgs1 knockdown in vivo increases the power of arteriole oscillations across a broad range of very low frequencies (0.01-0.3 Hz), including ultra-slow vasomotion (∼0.1 Hz). Conversely, clamping astrocyte Ca2+in vivo reduces the power of vasomotion. These data demonstrate bidirectional communication between arterioles and astrocyte endfeet to regulate oscillatory microvasculature activity.


Asunto(s)
Arteriolas/fisiología , Astrocitos/fisiología , Ciclooxigenasa 1/metabolismo , Retroalimentación Fisiológica , Estrés Mecánico , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Vasoconstricción , Vasodilatación
11.
Nat Commun ; 11(1): 2014, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332733

RESUMEN

Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled.


Asunto(s)
Astrocitos/metabolismo , Metabolismo Energético/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Estrés Psicológico/metabolismo , Adaptación Psicológica/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Redes y Vías Metabólicas/fisiología , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Técnicas de Placa-Clamp
12.
Nat Commun ; 11(1): 3064, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528004

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Cell Rep ; 32(12): 108169, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966798

RESUMEN

Neuronal hyperactivity is an early primary dysfunction in Alzheimer's disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued ß-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-ß-amyloid-targeted anti-AD strategy.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/patología , Neuronas/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Región CA1 Hipocampal/patología , Carvedilol/farmacología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Activación del Canal Iónico , Potenciación a Largo Plazo , Trastornos de la Memoria/fisiopatología , Ratones Transgénicos , Mutación/genética , Neuroprotección/efectos de los fármacos , Canales de Potasio/metabolismo , Células Piramidales/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Factores de Tiempo , Regulación hacia Arriba
14.
Eur J Pharmacol ; 574(1): 29-38, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17719573

RESUMEN

Chronic cerebral hypoperfusion is related to neurological disorders and contributes to a cognitive decline. Its experimental model in rats is permanent, bilateral common carotid artery occlusion. The cyclooxygenase (COX) system plays a pivotal role in the evolution of ischemic brain damage. Several COX inhibitors have proved to be neuroprotective in stroke models. We set out to characterize the effects of COX inhibitors in rats with permanent cerebral hypoperfusion. Some of the animals were exposed to two-vessel occlusion (n=72), while the others served as sham-operated controls (n=54). This was followed by a 3-day post-treatment with the nonselective COX inhibitor indomethacin (3 mg/kg) or with the selective COX-2 inhibitor NS-398 (15 mg/kg) or with the solvent. Some groups of the animals were sacrificed after 3 days, while the remainder were tested in the Morris watermaze for 5 days, and were sacrificed after 2 weeks. Neurons in the hippocampus were subjected to immunocytochemical labeling with cresyl violet, the dendrites with microtubule-associated protein-2, astrocytes with glial fibrillary acidic protein and microglia activation with OX-42 antibody. Two-vessel occlusion induced a learning impairment, mild neuronal damage, marked dendritic injury and moderate astrocytic reaction in the hippocampus. NS-398, but not indomethacin improved the survival rate and abolished the learning disability. However, both drugs increased the proportion of animals displaying neuronal damage. Glial markers revealed a time-dependent elevation in both the sham and the two-vessel occluded group, and were unaffected by the treatments. In summary, NS-398 prevented the hypoperfusion-induced memory impairment, but not by protecting the hippocampal neurons.


Asunto(s)
Isquemia Encefálica/prevención & control , Inhibidores de la Ciclooxigenasa/farmacología , Hipocampo/efectos de los fármacos , Indometacina/farmacología , Trastornos de la Memoria/prevención & control , Nitrobencenos/farmacología , Sulfonamidas/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Estenosis Carotídea/complicaciones , Inhibidores de la Ciclooxigenasa/uso terapéutico , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Indometacina/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Nitrobencenos/uso terapéutico , Ratas , Ratas Wistar , Sulfonamidas/uso terapéutico , Análisis de Supervivencia
15.
Brain Res ; 1087(1): 168-74, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16624259

RESUMEN

Diazoxide has been identified as a mitochondrial, ATP-dependent K(+) channel opener, and a potentially neuroprotective compound under ischemic conditions. We set out to characterize the consequences of various treatment strategies with diazoxide in a rat model of chronic cerebral hypoperfusion. Cerebral hypoperfusion was induced by permanent, bilateral occlusion of the common carotid arteries (2VO, n = 36), sham-operated rats serving as controls (SHAM, n = 29). Diazoxide or its vehicle was administered i.p. daily (5 x 0.5 mg/kg/0.25 ml) or as a bolus injection (5 mg/kg/0.25 ml) before surgery or daily after surgery (5 x 0.5 mg/kg/0.25 ml). Spatial learning performance was assessed 1 week after 2VO in the Morris maze. Hippocampal pyramidal cell loss was assessed on cresyl violet-stained sections, while glial reactivity was labeled immunocytochemically. Daily or bolus pretreatment with diazoxide significantly improved 2VO-related learning impairment, whereas posttreatment was ineffective. The number of CA1 pyramidal neurons was reduced by 2VO, which was prevented by repeated or bolus pretreatment with diazoxide. Astrocyte proliferation and microglial activation were enhanced by posttreatment with diazoxide in the hippocampus CA1 area of 2VO animals as compared with SHAM. These data demonstrate that the neuroprotective effect exerted by diazoxide depends on the time of administration with respect to the onset of ischemia; pretreatment but not posttreatment with the compound has proved to be neuroprotective in chronic cerebral hypoperfusion. Thus, pretreatment with diazoxide offers therapeutical prospects for the treatment of cerebral ischemia.


Asunto(s)
Antihipertensivos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Diazóxido/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Isquemia Encefálica/patología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Esquema de Medicación , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Inmunohistoquímica/métodos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Factores de Tiempo
16.
Nat Neurosci ; 24(5): 615-617, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33883740
17.
Neurosci Lett ; 373(3): 195-9, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-15619542

RESUMEN

Aging and dementia are accompanied by cerebral white matter (WM) injury, which is considered to be of ischemic origin. A causal link between cerebral ischemia and WM damage has been demonstrated in rats; however, few attempts appear to have been made to test potential drugs for the alleviation of ischemia-related WM injury. We induced cerebral hypoperfusion via permanent, bilateral occlusion of the common carotid arteries of rats. A mitochondrial ATP-sensitive potassium channel opener diazoxide (5 mg/kg) or its solvent dimethyl sulphoxide (DMSO) was administered i.p. (0.25 ml) on 5 consecutive days after surgery. Sham-operated animals served as control for surgery, and non-treated rats as controls for treatments. Thirteen weeks after surgery, the animals were sacrificed and astrocytes and microglia were labeled immunocytochemically in the internal capsule, the corpus callosum and the optic tract. The astrocytic proliferation was enhanced by cerebral hypoperfusion in the optic tract, and reduced by diazoxide in DMSO, but not by DMSO alone in the corpus callosum. After carotid artery occlusion, microglial activation was enhanced two-fold in the corpus callosum and four-fold in the optic tract. DMSO decreased microglial activation in the optic tract, while diazoxide in DMSO, but not DMSO alone, restored microglial activation to the control level in the corpus callosum. In summary, the rat optic tract appeared to be particularly vulnerable to ischemia, while the effect of diazoxide was restricted to the corpus callosum. We conclude that diazoxide dissolved in DMSO can moderate ischemia-related neuroinflammation by suppressing glial reaction in selective cerebral WM areas.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Diazóxido/uso terapéutico , Dimetilsulfóxido/uso terapéutico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Diazóxido/farmacología , Dimetilsulfóxido/farmacología , Masculino , Ratas , Ratas Wistar , Vías Visuales/efectos de los fármacos , Vías Visuales/patología
18.
J Cereb Blood Flow Metab ; 35(9): 1411-5, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26126870

RESUMEN

Ca(2+)-dependent pathways in neurons and astrocyte endfeet initiate changes in arteriole diameter to regulate local brain blood flow. Whether there exists a threshold of synaptic activity in which arteriole diameter is controlled independent of astrocyte endfeet Ca(2+) remains unclear. We used two-photon fluorescence microscopy to examine synaptically evoked synthetic or genetic Ca(2+) indicator signals around penetrating arterioles in acute slices of the rat neocortex. We discovered a threshold below which vasodilation occurred in the absence of endfeet Ca(2+) signals but with consistent neuronal Ca(2+) transients, suggesting endfoot Ca(2+) is not necessary for activity-dependent vasodilation under subtle degrees of brain activation.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/fisiología , Circulación Cerebrovascular/fisiología , Neocórtex , Sinapsis/metabolismo , Vasodilatación/fisiología , Animales , Arteriolas/fisiología , Astrocitos/citología , Masculino , Neocórtex/irrigación sanguínea , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Brain Res ; 1008(2): 252-60, 2004 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-15145763

RESUMEN

Chronic cerebral hypoperfusion, a mild ischemic condition is associated with advancing age and severity of dementia; however, no unanimous therapy has been established to alleviate related neurological symptoms. We imposed a permanent, bilateral occlusion of the common carotid arteries of rats (n=18) to create cerebral hypoperfusion. A mitochondrial ATP-sensitive K+ channel opener diazoxide (DZ, 5 mg/kg) or its solvent dimethyl sulphoxide (DMSO) were administered i.p. (0.25 ml) on five consecutive days after surgery. Sham-operated animals (n=18) served as control for the surgery, while nontreated rats were used as control for the treatments. Three months after the onset of cerebral hypoperfusion, the rats were tested in a hippocampus-related learning paradigm, the Morris water maze. Subsequently, the animals were sacrificed and neurons, astrocytes and microglia were labeled with immunocytochemistry in the dorsal hippocampus. DMSO and diazoxide dissolved in DMSO restored cerebral hypoperfusion-related learning dysfunction and prevented cyclooxygenase-2-positive neuron loss in the dentate gyrus. Cerebral hypoperfusion led to reduced astrocyte proliferation, which was not clearly affected by the treatment. Microglia activation was considerably enhanced by cerebral hypoperfusion, which was completely prevented by diazoxide dissolved in DMSO, but not by DMSO alone. We conclude that diazoxide can moderate ischemia-related neuroinflammation by suppressing microglial activation. Furthermore, we suggest that DMSO is a neuroprotective chemical in ischemic conditions, and it must be considerately used as a solvent for water-insoluble compounds in experimental animal models.


Asunto(s)
Encéfalo/patología , Arterias Carótidas/fisiología , Trastornos Cerebrovasculares/psicología , Diazóxido/farmacología , Dimetilsulfóxido/farmacología , Discapacidades para el Aprendizaje/prevención & control , Vasodilatadores/farmacología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Antígeno CD11b/metabolismo , Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/patología , Ciclooxigenasa 2 , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Inmunohistoquímica , Isoenzimas/metabolismo , Discapacidades para el Aprendizaje/etiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Ratas Wistar , Análisis de Supervivencia
20.
Neurobiol Aging ; 35(12): 2803-2811, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25044075

RESUMEN

Spreading depolarization (SD) contributes to the ischemic damage of the penumbra. Although age is the largest predictor of stroke, no studies have examined age dependence of SD appearance. We characterized the electrophysiological and hemodynamic changes in young (6 weeks old, n = 7), middle-aged (9 months old, n = 6), and old (2 years old, n = 7) male Wistar rats during 30 minutes of middle cerebral artery occlusion (MCAO), utilizing multimodal imaging through a closed cranial window over the ischemic cortex: membrane potential changes (with a voltage-sensitive dye), cerebral blood volume (green light reflectance), and cerebral blood flow (CBF, laser-speckle imaging) were observed. The initial CBF drop was similar in all groups, with a significant further reduction during ischemia in old rats (p < 0.01). Age reduced the total number of SDs (p < 0.05) but increased the size of ischemic area displaying prolonged SD (p < 0.01). The growth of area undergoing prolonged SDs positively correlated with the growth of ischemic core area (p < 0.01) during MCAO. Prolonged SDs and associated hypoperfusion likely compromise cortical tissue exposed to even a short focal ischemia in aged rats.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Animales , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Circulación Cerebrovascular , Fenómenos Electrofisiológicos , Hemodinámica , Masculino , Potenciales de la Membrana , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA