Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 2): 135827, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306177

RESUMEN

Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.

2.
Bioengineering (Basel) ; 9(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35735475

RESUMEN

The ability to regenerate damaged cartilage capable of long-term performance in an active joint remains an unmet clinical challenge in regenerative medicine. Biomimetic scaffold biomaterials have shown some potential to direct effective cartilage-like formation and repair, albeit with limited clinical translation. In this context, type II collagen (CII)-containing scaffolds have been recently developed by our research group and have demonstrated significant chondrogenic capacity using murine cells. However, the ability of these CII-containing scaffolds to support improved longer-lasting cartilage repair with reduced calcified cartilage formation still needs to be assessed in order to elucidate their potential therapeutic benefit to patients. To this end, CII-containing scaffolds in presence or absence of hyaluronic acid (HyA) within a type I collagen (CI) network were manufactured and cultured with human mesenchymal stem cells (MSCs) in vitro under chondrogenic conditions for 28 days. Consistent with our previous study in rat cells, the results revealed enhanced cartilage-like formation in the biomimetic scaffolds. In addition, while the variable chondrogenic abilities of human MSCs isolated from different donors were highlighted, protein expression analysis illustrated consistent responses in terms of the deposition of key cartilage extracellular matrix (ECM) components. Specifically, CI/II-HyA scaffolds directed the greatest cell-mediated synthesis and accumulation in the matrices of type II collagen (a principal cartilage ECM component), and reduced deposition of type X collagen (a key protein associated with hypertrophic cartilage formation). Taken together, these results provide further evidence of the capability of these CI/II-HyA scaffolds to direct enhanced and longer-lasting cartilage repair in patients with reduced hypertrophic cartilage formation.

3.
Biomater Sci ; 10(4): 970-983, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35018931

RESUMEN

A major challenge in cartilage tissue engineering (TE) is the development of instructive and biomimetic scaffolds capable of driving effective mesenchymal stem cell (MSC) chondrogenic differentiation and robust de novo matrix formation. Type I collagen-based scaffolds are one of the most commonly selected materials given collagen's intrinsic ability to act as an instructive and active biomaterial. However, the chondrogenic potential of these scaffolds does not offer significant improvement over traditional treatments. We propose that taking a biomimetic approach to scaffold development might lead to an improved outcome for enhanced cartilage repair. Therefore, this study aimed to develop innovative type II collagen (CII)-containing scaffolds for enhanced cartilage repair, by incorporating CII and/or hyaluronic acid (HyA) into a type I collagen (CI) framework. Moreover, focus was placed on understanding the potential synergistic effects played by CII in combination with HyA, in terms of MSC chondrogenesis and cartilage-like formation, when both molecules are incorporated into scaffold biomaterials. The newly developed CII-containing scaffold exhibited a highly porous interconnected structure with 99% porosity and similar mechanical properties to previously optimised collagen-based scaffolds. Although all scaffold variants sustained early cartilaginous matrix deposition, the CII-containing scaffolds in the presence of HyA performed best, offering enhanced deposition and distribution of sulphated glycosaminoglycans (sGAG) in vitro by day 28. Taken together, the combination of CII and HyA resulted in the development of a biomimetic scaffold with improved chondrogenic benefits. These simple "off-the-shelf" implants hold great promise to direct enhanced tissue regeneration for the treatment of focal cartilage defects.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Cartílago , Diferenciación Celular , Colágeno Tipo II , Porosidad , Ingeniería de Tejidos , Andamios del Tejido
4.
Carbohydr Polym ; 199: 593-602, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143167

RESUMEN

The fabrication of porous 3D printed chitosan (CH) scaffolds for skin tissue regeneration and their behavior in terms of biocompatibility, cytocompatibility and toxicity toward human fibroblasts (Nhdf) and keratinocytes (HaCaT), are presented and discussed. 3D cell cultures achieved after 20 and 35 days of incubation showed significant in vitro qualitative and quantitative cell growth as measured by neutral red staining and MTT assays and confirmed by scanning electron microphotographs. The best cell growth was obtained after 35 days on 3D scaffolds when the Nhdf and HaCaT cells, seeded together, filled the pores in the scaffolds. An early skin-like layer consisting of a mass of fibroblast and keratinocyte cells growing together was observed. The tests of 3D printed scaffolds in wound healing carried out on streptozotocin-induced diabetic rats demonstrate that 3D printed scaffolds improve the quality of the restored tissue with respect to both commercial patch and spontaneous healing.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Quitosano/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Impresión Tridimensional , Andamios del Tejido/química , Cicatrización de Heridas/fisiología , Animales , Vendajes , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Quitosano/toxicidad , Módulo de Elasticidad , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Porosidad , Ratas Wistar , Piel/efectos de los fármacos , Técnicas de Cierre de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA