Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Br J Cancer ; 129(8): 1350-1361, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37673961

RESUMEN

BACKGROUND: Resistance to androgen receptor signalling inhibitors (ARSIs) represents a major clinical challenge in prostate cancer. We previously demonstrated that the ARSI enzalutamide inhibits only a subset of all AR-regulated genes, and hypothesise that the unaffected gene networks represent potential targets for therapeutic intervention. This study identified the hyaluronan-mediated motility receptor (HMMR) as a survival factor in prostate cancer and investigated its potential as a co-target for overcoming resistance to ARSIs. METHODS: RNA-seq, RT-qPCR and Western Blot were used to evaluate the regulation of HMMR by AR and ARSIs. HMMR inhibition was achieved via siRNA knockdown or pharmacological inhibition using 4-methylumbelliferone (4-MU) in prostate cancer cell lines, a mouse xenograft model and patient-derived explants (PDEs). RESULTS: HMMR was an AR-regulated factor that was unaffected by ARSIs. Genetic (siRNA) or pharmacological (4-MU) inhibition of HMMR significantly suppressed growth and induced apoptosis in hormone-sensitive and enzalutamide-resistant models of prostate cancer. Mechanistically, 4-MU inhibited AR nuclear translocation, AR protein expression and subsequent downstream AR signalling. 4-MU enhanced the growth-suppressive effects of 3 different ARSIs in vitro and, in combination with enzalutamide, restricted proliferation of prostate cancer cells in vivo and in PDEs. CONCLUSION: Co-targeting HMMR and AR represents an effective strategy for improving response to ARSIs.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Nitrilos/farmacología , ARN Interferente Pequeño/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Proliferación Celular
2.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32170339

RESUMEN

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Morfolinas/farmacología , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
Mol Cell Proteomics ; 17(8): 1470-1486, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632047

RESUMEN

Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (n = 16 and 30, respectively) were cultured in the absence or presence of Hsp90 inhibitors AUY922 or 17-AAG. PDEs were analyzed by LC-MS/MS with a hyper-reaction monitoring data independent acquisition (HRM-DIA) workflow, and differentially expressed proteins identified using repeated measure analysis of variance (ANOVA; raw p value <0.01). Using gene set enrichment, we found striking conservation of the most significantly AUY922-altered gene pathways between the discovery and validation cohorts, indicating that our experimental and analysis workflows were robust. Eight proteins were selectively altered across both cohorts by the most potent inhibitor, AUY922, including TIMP1, SERPINA3 and CYP51A (adjusted p < 0.01). The AUY922-mediated decrease in secretory TIMP1 was validated by ELISA of the PDE culture medium. We next exploited the heterogeneous response of PDEs to 17-AAG in order to detect predictive biomarkers of response and identified PCBP3 as a marker with increased expression in PDEs that had no response or increased in proliferation. Also, 17-AAG treatment led to increased expression of DNAJA1 in PDEs that exhibited a cytostatic response, revealing potential drug resistance mechanisms. This selective regulation of DNAJA1 was validated by Western blot analysis. Our study establishes "proof-of-principle" that proteomic profiling of drug-treated PDEs represents an effective and clinically-relevant strategy for identification of biomarkers that associate with certain tumor-specific responses.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Proteómica/métodos , Benzoquinonas/farmacología , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Resistencia a Antineoplásicos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/farmacología , Lactamas Macrocíclicas/farmacología , Masculino , Proteínas de Neoplasias/metabolismo , Análisis de Componente Principal , Neoplasias de la Próstata/patología , Proteoma/metabolismo , Reproducibilidad de los Resultados , Resorcinoles/farmacología
4.
Prostate ; 76(16): 1546-1559, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27526951

RESUMEN

BACKGROUND: While there is compelling rationale to use heat shock protein 90 (Hsp90) inhibitors for treatment of advanced prostate cancer, agents that target the N-terminal ATP-binding site of Hsp90 have shown little clinical benefit. These N-terminal binding agents induce a heat shock response that activates compensatory heat shock proteins, which is believed to contribute in part to the agents' lack of efficacy. Here, we describe the functional characterization of two novel agents, SM253 and SM258, that bind the N-middle linker region of Hsp90, resulting in reduced client protein activation and preventing C-terminal co-chaperones and client proteins from binding to Hsp90. METHODS: Inhibition of Hsp90 activity in prostate cancer cells by SM253 and SM 258 was assessed by pull-down assays. Cell viability, proliferation and apoptosis were assayed in prostate cancer cell lines (LNCaP, 22Rv1, PC-3) cultured with N-terminal Hsp90 inhibitors (AUY922, 17-AAG), SM253 or SM258. Expression of HSR heat shock proteins, Hsp90 client proteins and co-chaperones was assessed by immunoblotting. Efficacy of the SM compounds was evaluated in human primary prostate tumors cultured ex vivo by immunohistochemical detection of Hsp70 and Ki67. RESULTS: SM253 and SM258 exhibit antiproliferative and pro-apoptotic activity in multiple prostate cancer cell lines (LNCaP, 22Rv1, and PC-3) at low micromolar concentrations. Unlike the N-terminal inhibitors AUY922 and 17-AAG, these SM agents do not induce expression of Hsp27, Hsp40, or Hsp70, proteins that are characteristic of the heat shock response, in any of the prostate cell lines analyzed. Notably, SM258 significantly reduced proliferation within 2 days in human primary prostate tumors cultured ex vivo, without the significant induction of Hsp70 that was caused by AUY922 in the tissues. CONCLUSIONS: Our findings provide the first evidence of efficacy of this class of C-terminal modulators of Hsp90 in human prostate tumors, and indicate that further evaluation of these promising new agents is warranted. Prostate 76:1546-1559, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Respuesta al Choque Térmico/efectos de los fármacos , Péptidos Cíclicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/análisis , Proteínas HSP90 de Choque Térmico/química , Proteínas de Choque Térmico/análisis , Humanos , Inmunohistoquímica , Masculino , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología
5.
Clin Cancer Res ; 28(7): 1446-1459, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078861

RESUMEN

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.


Asunto(s)
Proteína Quinasa Activada por ADN , Neoplasias de la Próstata Resistentes a la Castración , ADN , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Glucólisis , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteómica , Piruvato Quinasa/metabolismo
6.
Adv Healthc Mater ; 10(6): e2001594, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33274851

RESUMEN

Over the last thirty years, research in nanomedicine has widely been focused on applications in cancer therapeutics. However, despite the plethora of reported nanoscale drug delivery systems that can successfully eradicate solid tumor xenografts in vivo, many of these formulations have not yet achieved clinical translation. This issue particularly pertains to the delivery of small interfering RNA (siRNA), a highly attractive tool for selective gene targeting. One of the likely reasons behind the lack of translation is that current in vivo models fail to recapitulate critical elements of clinical solid tumors that may influence drug response, such as cellular heterogeneity in the tumor microenvironment. This study incorporates a more clinically relevant model for assessing siRNA delivery systems; ex vivo culture of prostate cancer harvested from patients who have undergone radical prostatectomy, denoted patient-derived explants (PDE). The model retains native human tissue architecture, microenvironment, and cell signaling pathways. Porous silicon nanoparticles (pSiNPs) behavior in this model is investigated and compared with commonly used 3D cancer cell spheroids for their efficacy in the delivery of siRNA directed against the androgen receptor (AR), a key driver of prostate cancer.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata , Línea Celular Tumoral , Humanos , Masculino , Nanomedicina , Neoplasias de la Próstata/terapia , ARN Interferente Pequeño , Microambiente Tumoral
7.
Elife ; 102021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382934

RESUMEN

Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin complex 1 (mTORC1); and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and 6PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single-agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Línea Celular , Emodina/análogos & derivados , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Vía de Pentosa Fosfato , Neoplasias de la Próstata/genética , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
8.
Cancer Res ; 81(19): 4981-4993, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34362796

RESUMEN

Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues (n = 21), independent unmatched tissues (n = 47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n = 43). Significant differences in lipid composition were detected and spatially visualized in tumors compared with matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting. SIGNIFICANCE: This study identifies malignancy and treatment-associated changes in lipid composition of clinical prostate cancer tissues, suggesting that mediators of these lipidomic changes could be targeted using existing metabolic agents.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Lípidos de la Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Biomarcadores , Biología Computacional/métodos , Metabolismo Energético , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica/métodos , Masculino , Metabolómica/métodos , Terapia Molecular Dirigida , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/etiología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
9.
Mol Cancer Res ; 18(10): 1500-1511, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32669400

RESUMEN

HSP90 is a molecular chaperone required for stabilization and activation of hundreds of client proteins, including many known oncoproteins. AUY922 (luminespib), a new-generation HSP90 inhibitor, exhibits potent preclinical efficacy against several cancer types including prostate cancer. However, clinical use of HSP90 inhibitors for prostate cancer has been limited by toxicity and treatment resistance. Here, we aimed to design an effective combinatorial therapeutic regimen that utilizes subtoxic doses of AUY922, by identifying potential survival pathways induced by AUY922 in clinical prostate tumors. We conducted a proteomic analysis of 30 patient-derived explants (PDE) cultured in the absence and presence of AUY922, using quantitative mass spectrometry. AUY922 significantly increased the abundance of proteins involved in oxidative phosphorylation and fatty acid metabolism in the PDEs. Consistent with these findings, AUY922-treated prostate cancer cell lines exhibited increased mitochondrial mass and activated fatty acid metabolism processes. We hypothesized that activation of fatty acid oxidation is a potential adaptive response to AUY922 treatment and that cotargeting this process will sensitize prostate cancer cells to HSP90 inhibition. Combination treatment of AUY922 with a clinical inhibitor of fatty acid oxidation, perhexiline, synergistically decreased viability of several prostate cancer cell lines, and had significant efficacy in PDEs. The novel drug combination treatment induced cell-cycle arrest and apoptosis, and attenuated the heat shock response, a known mediator of HSP90 treatment resistance. This combination warrants further preclinical and clinical investigation as a novel strategy to overcome resistance to HSP90 inhibition. IMPLICATIONS: Metabolic pathways induced in tumor cells by therapeutic agents may be critical, but targetable, mediators of treatment resistance.


Asunto(s)
Ácidos Grasos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Espectrometría de Masas/métodos , Neoplasias de la Próstata/genética , Humanos , Masculino , Oxidación-Reducción , Neoplasias de la Próstata/mortalidad , Análisis de Supervivencia
10.
Elife ; 92020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686647

RESUMEN

Fatty acid ß-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited ß-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.


Asunto(s)
Ferroptosis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Neoplasias de la Próstata/fisiopatología , Línea Celular Tumoral , Ácidos Grasos Insaturados/metabolismo , Humanos , Masculino , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Neoplasias de la Próstata/genética
11.
PLoS One ; 14(9): e0221566, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31479468

RESUMEN

Sex-based differences in susceptibility have been reported for a number of neovascular ocular diseases. We quantified corneal neovascularization, induced by superficial silver nitrate cautery, in male and female inbred albino Sprague-Dawley, inbred albino Fischer 344, outbred pigmented Hooded Wistar and inbred pigmented Dark Agouti rats of a range of ages. Corneal neovascular area was quantified on haematoxylin-stained corneal flatmounts by image analysis. Pro-and anti-angiogenic gene expression was measured early in the neovascular response by quantitative real-time polymerase chain reaction. Androgen and estrogen receptor expression was assessed by immunohistochemistry. Male rats from all strains, with or without ocular pigmentation, exhibited significantly greater corneal neovascular area than females: Sprague-Dawley males 43±12% (n = 8), females 25±5% (n = 12), p = 0.001; Fischer 344 males 38±10% (n = 12) females 27±8% (n = 8) p = 0.043; Hooded Wistar males 32±6% (n = 8) females 22±5% (n = 12) p = 0.002; Dark Agouti males 37±11% (n = 9) females 26±7% (n = 9) p = 0.015. Corneal vascular endothelial cells expressed neither androgen nor estrogen receptor. The expression in cornea post-cautery of Cox-2, Vegf-a and Vegf-r2 was significantly higher in males compared with females and Vegf-r1 was significantly lower in the cornea of males compared to females, p<0.001 for each comparison. These data suggest that male corneas are primed for angiogenesis through a signalling nexus involving Cox-2, Vegf-a, and Vegf receptors 1 and 2. Our findings re-enforce that pre-clinical animal models of human diseases should account for sex-based differences in their design and highlight the need for well characterized and reproducible pre-clinical studies that include both male and female animals.


Asunto(s)
Córnea/irrigación sanguínea , Córnea/metabolismo , Neovascularización de la Córnea/etiología , Animales , Córnea/patología , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/metabolismo , Ciclooxigenasa 2/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas , Ratas Sprague-Dawley , Ratas Wistar , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Caracteres Sexuales , Especificidad de la Especie , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
12.
Sci Rep ; 9(1): 15008, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628408

RESUMEN

Patient-derived explant (PDE) culture of solid tumors is increasingly being applied to preclinical evaluation of novel therapeutics and for biomarker discovery. In this technique, treatments are added to culture medium and penetrate the tissue via a gelatin sponge scaffold. However, the penetration profile and final concentrations of small molecule drugs achieved have not been determined to date. Here, we determined the extent of absorption of the clinical androgen receptor antagonist, enzalutamide, into prostate PDEs, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser/desorption ionisation (MALDI) mass spectrometry imaging (MSI). In a cohort of 11 PDE tissues from eight individual patients, LC-MS/MS quantification of PDE homogenates confirmed enzalutamide (10 µM) uptake by all PDEs, which reached maximal average tissue concentration of 0.24-0.50 ng/µg protein after 48 h culture. Time dependent uptake of enzalutamide (50 µM) in PDEs was visualized using MALDI MSI over 24-48 h, with complete penetration throughout tissues evident by 6 h of culture. Drug signal intensity was not homogeneous throughout the tissues but had areas of markedly high signal that corresponded to drug target (androgen receptor)-rich epithelial regions of tissue. In conclusion, application of MS-based drug quantification and visualization in PDEs, and potentially other 3-dimensional model systems, can provide a more robust basis for experimental study design and interpretation of pharmacodynamic data.


Asunto(s)
Absorción Fisicoquímica , Antagonistas de Receptores Androgénicos/química , Antineoplásicos/química , Evaluación Preclínica de Medicamentos/métodos , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/patología , Espectrometría de Masas en Tándem/métodos , Anciano , Benzamidas , Células Cultivadas , Cromatografía Liquida , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Nitrilos , Feniltiohidantoína/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA