Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31424, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818153

RESUMEN

Greenly synthesized nanoparticles have garnered attention due to their low environmental footprint, but impurities limit their applications. A novel semi-organic method for synthesizing silver nanoparticles (AgNPs) using bio-based chelating fuels (Beta vulgaris subsp., Spinacia oleracea, and Ipomoea batatas) reduces the undesirable impurities. The study also showcases the impact of bio-based chelating fuel on various characteristics of AgNPs in comparison to synthetic chelating fuel. The antimicrobial efficacy of the synthesized AgNPs in conjunction with honey was also assessed against E. coli. The XRD analysis showed cubic structure of AgNPs. The FESEM and TEM analysis showed that the well-connected spherical-shaped AgNPs (∼3-120 nm diameter) while EDS confirmed the presence of Ag in all samples. The TEM analysis also revealed layers of carbonates in AgNPs synthesized using bio-based chelating fuels. XPS investigation confirmed the absence of any prominent impurities in prepared samples and AgNPs have not experienced oxidation on their surface. However, notable surface charging effects due to the uneven conductivity of the particles were observed. The broth dilution method showed that all mixtures containing AgNPs in combination with honey exhibited a significant bacterial growth reduction over a period of 120 h. The highest growth reduction of ∼75 % is obtained for the mixture having AgNPs (Ipomoea batatas) while the least growth reduction of ∼51 % is obtained for the mixture having AgNPs (Beta vulgaris subsp.). The findings affirm that AgNPs can be successfully synthesized using bio-based chelating fuels with negligible ecological consequences and devoid of contaminants. Moreover, the synthesized AgNPs can be employed in conjunction with honey for antibacterial purposes.

2.
ACS Omega ; 8(29): 25640-25648, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521614

RESUMEN

Titanium dioxide (TiO2) is one of the most widely used photocatalysts due to its physical and chemical properties. In this study, hydrogen energy production using TiO2- and titanate-based photocatalysts is discussed along with the pros and cons. The mechanism of the photocatalysis has been elaborated to pinpoint the photocatalyst for better performance. The chief characteristics and limitations of the TiO2 photocatalysts have been assessed. Further, TiO2-based photocatalysts modified with a transition metal, transition metal oxide, noble metal, graphitic carbon nitride, graphene, etc. have been reviewed. This study will provide a basic understanding to beginners and detailed knowledge to experts in the field to optimize the TiO2-based photocatalysts for hydrogen production.

3.
Sci Prog ; 106(1): 368504221148342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36617880

RESUMEN

For evaluating the significance of renewable alternative fuels for optimized engine performance and lower emissions, methanol has been extensively utilized as a blend with gasoline in spark-ignition engines. However, rare attempts have been rendered to examine the consequence of methanol-gasoline fuel blends (M6, M12, and M18) on lubricant oil operating for a longer period in engines. The highest and least decrease of 9.62% and 6.68% in kinematic viscosity (KV) was observed for M0 and M18, respectively. However, the flash point (FP) of degraded lubricant oil for M6, M12, and M18 was 3%, 5%, and 7% higher than that of M0, respectively. Total acid number (TAN) and ash content of degraded lubricant oil for M18 were the highest among M0, M6, and M12. An inclusive optimization of engine performance, emissions, and lubricant oil properties has been made for various methanol-gasoline fuel blends at distinct operating conditions by employing the response surface methodology (RSM) technique. RSM-based optimization portrayed the composite desirability value of 0.73 for 2137.13 watt brake power (BP), 6.08 N-m torque, 0.37 kg/kwh brake-specific fuel consumption, 22.10% brake thermal efficiency, 4.02% carbon monoxide emission, 7.15% carbon dioxide emission, 134.12 ppm hydrocarbon emission, 517.02 ppm nitrogen oxides emission, 12.44 cst KV, 203.77°C FP, 2.23 mg/g KOH TAN, and 2.65%wt ash content as responses for fuel blend M8 at 3400 rpm and higher loading condition. RSM predicted results demonstrated significant compliance with empirical findings, with absolute percentage error (APE) below 5% for each response. However, the highest APE of 4.68% was obtained for FP owing to inefficient desirability as a consequence of manual testing. The least APE of 1.57% was obtained for torque because of the highest desirability. Overall, the RSM predicted results of the designed models are effective and viable. RSM technique was found to be effective for the optimization of the broader engine characteristics spectrum.

4.
Front Chem ; 11: 1322475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090348

RESUMEN

In this study, BaZr0.87Y0.1M0.03O3-δ perovskite electrolytes with sintering aids (M = Mn, Co, and Fe) were synthesized by a sustainable approach using spinach powder as a chelating agent and then compared with chemically synthesized BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes for intermediate temperature SOFCs. This is the first example of such a sustainable synthesis of perovskite materials with sintering aids. Structural analysis revealed the presence of a cubic perovskite structure in BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) samples synthesized by both green and conventional chemical methods. No significant secondary phases were observed in the samples synthesized by a sustainable approach. The observed phenomena of plane shift were because of the disparities between ionic radii of the dopants, impurities, and host materials. The surface morphology analysis revealed a denser microstructure for the electrolytes synthesized via green routes due to metallic impurities in the organic chelating agent. The absence of significant impurities was also observed by compositional analysis, while functional groups were identified through Fourier-transform infrared spectroscopy. Conductivity measurements showed that BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes synthesized by oxalic acid have higher conductivities compared to BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes synthesized by the green approach. The button cells employing BaZr0.87Y0.1Co0.03O3-δ electrolytes synthesized by the chemical and green routes achieved peak power densities 344 and 271 mW·cm-2 respectively, suggesting that the novel green route can be applied to synthesize SOFC perovskite materials with minimal environmental impact and without significantly compromising cell performance.

5.
Environ Sci Pollut Res Int ; 29(11): 16772-16781, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35041164

RESUMEN

The world is facing environmental pollution and is in an alarming situation due to industrialization and urbanization. Especially, industrial wastewater discharge is causing serious pollution in the environment (water, soil, and air) and has become a challenge for researchers and scientists. Wastewater contains heavy metals like Cu, Ni, Cr, Pb, and Ar and causes toxicity in living beings and the environment. In this review, the sources of heavy metals and their toxicological effects on the environment have been reviewed. Various remediation techniques such as reverse osmosis, chemical precipitation, and ultrafiltration are being used for the treatment of wastewater, but still are limited in their efficiencies, residues, cost, and versatility. In this study, the most promising wastewater treatment technique, the physic-chemical technique, has been reviewed along with its working mechanism and efficiency. Further, the pros and cons of this technique and sub-techniques have also been reviewed to provide a basic understanding to beginners and a pathway to experts in the selection of better techniques.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Metales Pesados/análisis , Ultrafiltración , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Materials (Basel) ; 15(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35629612

RESUMEN

BaCe0.2Zr0.6Y0.2O3−δ (BCZY) perovskite electrolytes were synthesized for intermediate-temperature solid oxide fuel cell with a cost-effective and versatile co-precipitation method. The synthesized BCZY electrolytes were sintered at 900, 1000, and 1100 °C to observe the effects of low sintering temperature on the structural, morphological, thermal, and electrical properties of BCZY. All BCZY electrolytes materials exhibited a crystalline perovskite structure and were found to be thermally stable. The crystallinity and conductivity of BCZY electrolyte enhanced with increased sintering temperature, due to the grain growth. At the same time, secondary phases of carbonates were also observed for samples sintered at a temperature lower than 1100 °C. The BCZY sintered at 1100 °C exhibited a density >95%, and a power density of 350 mWcm−2 with open-circuit voltage 1.02 V at 650 °C was observed due its dense and airtight structure. Based on the current investigation, we suggest that the BaCe0.2Zr0.6Y0.2O3−δ perovskite electrolyte sintered at a temperature of 1100 °C is a suitable electrolyte for IT-SOFC.

7.
RSC Adv ; 12(12): 7009-7039, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424711

RESUMEN

The massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and valence states. The current review is focused on perovskite materials and their applications in photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis application from wastewater treatment to hydrogen production are also provided. The key objective of this review is to encapsulate the role of perovskite materials in photocatalysis along with their fundamental properties to provide valuable insight for addressing future environmental challenges.

8.
RSC Adv ; 11(24): 14475-14483, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35424000

RESUMEN

In this research work, BaCo0.4Fe0.4Zr0.2-x Ni x O3-δ (x = 0, 0.01, 0.02, 0.03, 0.04) perovskite cathode material for IT-SOFC is synthesized successfully using a combustion method and sintered at low temperature. The effects of nickel as a sintering aid on the properties of BaCo0.4Fe0.4Zr0.2O3-δ are investigated through different characterization methods. The addition of nickel increased the densification and grain growth at a lower sintering temperature 1200 °C. XRD analysis confirms a single phase of BaCo0.4Fe0.4Zr0.2O3-δ , and an increase in crystalline size is observed. SEM micrographs show formation of dense microstructure with increased nickel concentration. TGA analysis revealed that BaCo0.4Fe0.4Zr0.2-x Ni x cathode materials are thermally stable within the SOFC temperature range, and negligible weight loss of 2.3% is observed. The bonds of hydroxyl groups and metal oxides are confirmed for all samples through FTIR analysis. The highest electrical properties are observed for BaCo0.4Fe0.4Zr0.2-x Ni x (x = 0.04) due to increased densification and electronic defects compared to other compositions. The maximum power density of 0.47 W cm-2 is obtained for a cell having cathode material BaCo0.4Fe0.4Zr0.2-x Ni x (x = 0.02) owing to its permeable and well-connected structure compared to others.

9.
Nanoscale Res Lett ; 16(1): 91, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34021844

RESUMEN

The present study is concerned with evaluating the influence of various concentrations of Ag within Cu:Ag bimetallic nanoparticles developed for use as a promising anti-bacterial agent against antibiotic-resistant bacteria. Here, Cu:Ag bimetallic nanoparticles with various concentration ratios (2.5, 5.0, 7.5, and 10 wt%) of Ag in fixed amount of Cu labeled as 1:0.025, 1:0.050, 1:0.075, and 1:0.1 were synthesized using co-precipitation method with ammonium hydroxide and deionized water as solvent, polyvinyl pyrrolidone as a capping agent, and sodium borohydride and ascorbic acid as reducing agents. These formulated products were characterized through a variety of techniques. XRD confirmed phase purity and detected the presence of distinct fcc structures belonging to Cu and Ag phases. FTIR spectroscopy confirmed the presence of vibrational modes corresponding to various functional groups and recorded characteristic peak emanating from the bimetallic. UV-visible spectroscopy revealed reduction in band gap with increasing Ag content. SEM and HR-TEM micrographs revealed spherical morphology of Ag-doped Cu bimetallic with small and large scale agglomerations. The samples exhibited varying dimensions and interlayer spacing. Bactericidal action of synthesized Cu:Ag bimetallic NPs depicted statistically significant (P < 0.05) inhibition zones recorded for various concentrations of Ag dopant against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Acinetobacter baumannii (A. baumannii) ranging from (0.85-2.8 mm), (0.55-1.95 mm) and (0.65-1.85 mm), respectively. Broadly, Cu:Ag bimetallic NPs were found to be more potent against gram-positive compared with gram-negative. Molecular docking study of Ag-Cu bimetallic NPs was performed against ß-lactamase which is a key enzyme of cell wall biosynthetic pathway from both S. aureus (Binding score: - 4.981 kcal/mol) and A. bauminnii (Binding score: - 4.013 kcal/mol). Similarly, binding interaction analysis against FabI belonging to fatty acid biosynthetic pathway from A. bauminnii (Binding score: - 3.385 kcal/mol) and S. aureus (Binding score: - 3.012 kcal/mol) along with FabH from E. coli (Binding score: - 4.372 kcal/mol) was undertaken. These theoretical computations indicate Cu-Ag bimetallic NPs as possible inhibitor of selected enzymes. It is suggested that exploring in vitro inhibition potential of these materials may open new avenues for antibiotic discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA