Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042483

RESUMEN

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Asunto(s)
Fucosa , Inflamación , Lipopolisacáridos , Animales , Humanos , Ratones , Receptor gp130 de Citocinas , Fucosa/farmacología , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , ARN Mensajero
2.
J Biol Chem ; 299(4): 103051, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813234

RESUMEN

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Doxorrubicina/farmacología , Polisacáridos/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
3.
J Biol Chem ; 299(8): 105051, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451482

RESUMEN

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3ß1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin ß1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.


Asunto(s)
Quinasa 1 de Adhesión Focal , Polisacáridos , Transducción de Señal , Humanos , Quinasa 1 de Adhesión Focal/metabolismo , Células HeLa , Proteínas de la Membrana/metabolismo , Fosforilación , Polisacáridos/metabolismo
4.
Cancer Sci ; 115(4): 1196-1208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288901

RESUMEN

Fms-like tyrosine kinase-3 (FLT3) is a commonly mutated gene in acute myeloid leukemia (AML). The two most common mutations are the internal-tandem duplication domain (ITD) mutation and the tyrosine kinase domain (TKD) mutation. FLT3-ITD and FLT3-TKD exhibit distinct protein stability, cellular localization, and intracellular signaling. To understand the underlying mechanisms, we performed proximity labeling with TurboID to identify proteins that regulate FLT3-ITD or -TKD differently. We found that BRCA1/BRCA2-containing complex subunit 36 (BRCC36), a specific K63-linked polyubiquitin deubiquitinase, was exclusively associated with ITD, not the wild type of FLT3 and TKD. Knockdown of BRCC36 resulted in decreased signal transducers and activators of transcription 5 phosphorylation and cell proliferation in ITD cells. Consistently, treatment with thiolutin, an inhibitor of BRCC36, specifically suppressed cell proliferation and induced cell apoptosis in ITD cells. Thiolutin efficiently affected leukemia cell lines expressing FLT3-ITD cell viability and exhibited mutual synergies with quizartinib, a standard clinical medicine for AML. Furthermore, mutation of the lysine at 609 of ITD led to significant suppression of K63 polyubiquitination and decreased its stability, suggesting that K609 is a critical site for K63 ubiquitination specifically recognized by BRCC36. These data indicate that BRCC36 is a specific regulator for FLT3-ITD, which may shed light on developing a novel therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Transducción de Señal/fisiología , Mutación , Estabilidad Proteica
5.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608490

RESUMEN

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilación , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular , Células HL-60 , Línea Celular Tumoral
6.
Glycoconj J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958800

RESUMEN

Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three ß-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3ß1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.

7.
FASEB J ; 36(2): e22149, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34981577

RESUMEN

N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Glicosilación , Células HEK293 , Células HeLa , Humanos
8.
FASEB J ; 34(2): 3239-3252, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908039

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) is a glycoprotein, that is a member of the class III receptor tyrosine kinase family. Approximately one-third of acute myeloid leukemia (AML) patients have mutations of this gene, and activation of the FLT3 downstream pathway plays an important role in both normal and malignant hematopoiesis. However, the role of N-glycosylation for FLT3 activation remains unclear. In this study, we showed that the N-glycan structures on wild type (WT), internal tandem duplication (ITD), and tyrosine kinase domain (TKD) mutants of FLT3 were different. Interestingly, expression of either WT or mutant FLT3 in Ba/F3 cells, an interleukin-3 (IL-3)-dependent hematopoietic progenitor cell, greatly induced core fucosylation. To elucidate the function of core fucosylation in FLT3-mediated signaling, we used a CRISPR/Cas9 system to establish α1,6-fucosyltransferase (Fut8) knockout (KO) cells. Surprisingly, the Fut8KO resulted in cell proliferation in an IL-3-independent manner in FLT3-WT cells, which was not observed in the parental cells, and suggested that this proliferation is dependent on FLT3 expression. Fut8KO greatly increased cellular tyrosine phosphorylation levels, together with an activation of STAT5, AKT, and ERK signaling, which could be completely neutralized by restoration with Fut8 in the KO cells. Consistently, a tyrosine kinase inhibitor efficiently inhibited cell proliferation induced by Fut8KO or specific fucosylation inhibitor. Additionally, immunostaining with FLT3 showed that the proteins were mainly expressed on the cell surface in the KO cells, which is similar to FLT3-WT cells, but different from the ITD mutant. Finally, we found that Fut8KO could induce dimer-formation in FLT3 without ligand-stimulation. Taken together, the present study clearly defines the regulatory function of core fucosylation in FLT3, which could provide a valuable direction for development of drugs could be effective in the treatment of AML.


Asunto(s)
Fucosa/metabolismo , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Glicosilación , Células HEK293 , Humanos , Interleucina-3/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT5/metabolismo , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/genética
9.
FASEB J ; 34(1): 881-897, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914669

RESUMEN

The α2,3-sialylation of N-glycans is considered important but complicated because the functions of the three ß-galactoside α2,3-sialyltransferases, ST3GAL3, ST3GAL4, and ST3GAL6, could be compensating for one another. To distinguish their specific functions, we established each individual knockout (KO) cell line. Loss of either the ST3GAL3 or ST3GAL6 genes decreased cell proliferation and colony formation, as opposed to the effect in the ST3GAL4 KO cells. The phosphorylation levels of ERK and AKT were significantly suppressed in the ST3GAL6 KO and ST3GAL3 KO cells, respectively. The cell aggregations were clearly observed in the KO cells, particularly the ST3GAL3 KO and ST3GAL6 KO cells, and the expression levels of E-cadherin and claudin-1 were enhanced in both those cell lines, but were suppressed in the ST3GAL4 KO cells. Those alterations were reversed with an overexpression of each corresponding gene in rescued cells. Of particular interest, the α2,3-sialylation levels of ß1 integrin were clearly suppressed in the ST3GAL4 KO cells, but these were increased in the ST3GAL3 KO and ST3GAL6 KO cells, whereas the α2,3-sialylation levels of EGFR were significantly decreased in the ST3GAL6 KO cells. The decrease in α2,3-sialylation increased the α2,6-sialylation on ß1, but not EGFR. Furthermore, a cross-restoration of each of the three genes in ST3GAL6 KO cells showed that overexpression of ST3GAL6 sufficiently rescued the total α2,3-sialylation levels, cell morphology, and α2,3-sialylation of EGFR, whereas the α2,3-sialylation levels of ß1 were greatly enhanced by an overexpression of ST3GAL4. These results clearly demonstrate that the three α2,3-sialyltransferases modify characteristic target proteins and regulate cell biological functions in different ways.


Asunto(s)
Sialiltransferasas/metabolismo , Cadherinas/metabolismo , Línea Celular , Proliferación Celular/fisiología , Glicosilación , Humanos , Fosforilación/fisiología , Transporte de Proteínas , Sialiltransferasas/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
10.
J Biol Chem ; 294(12): 4425-4436, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30659093

RESUMEN

Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3ß1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3ß1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3ß1.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Integrina alfa3beta1/metabolismo , Ácido N-Acetilneuramínico/metabolismo , 1-Fosfatidilinositol 4-Quinasa/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular , Técnicas de Silenciamiento del Gen , Humanos , Integrina alfa3beta1/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Polisacáridos/metabolismo , Unión Proteica , Transducción de Señal , Red trans-Golgi/metabolismo
11.
J Biol Chem ; 294(9): 3117-3124, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587575

RESUMEN

O-GlcNAcylation is a post-translational modification of a protein serine or threonine residue catalyzed by O-GlcNAc transferase (OGT) in the nucleus and cytoplasm. O-GlcNAcylation plays important roles in the cellular signaling that affect the different biological functions of cells, depending upon cell type. However, whether or not O-GlcNAcylation regulates cell adhesion and migration remains unclear. Here, we used the doxycycline-inducible short hairpin RNA (shRNA) system to establish an OGT knockdown (KD) HeLa cell line and found that O-GlcNAcylation is a key regulator for cell adhesion, migration, and focal adhesion (FA) complex formation. The expression levels of OGT and O-GlcNAcylation were remarkably suppressed 24 h after induction of doxycycline. Knockdown of OGT significantly promoted cell adhesion, but it suppressed the cell migration on fibronectin. The immunostaining with paxillin, a marker for FA plaque, clearly showed that the number of FAs was increased in the KD cells compared with that in the control cells. The O-GlcNAcylation levels of paxillin, talin, and focal adhesion kinase were down-regulated in KD cells. Interestingly, the complex formation between integrin ß1, focal adhesion kinase, paxillin, and talin was greatly increased in KD cells. Consistently, levels of active integrin ß1 were significantly enhanced in KD cells, whereas they were decreased in cells overexpressing OGT. The data suggest a novel regulatory mechanism for O-GlcNAcylation during FA complex formation, which thereby affects integrin activation and integrin-mediated functions such as cell adhesion and migration.


Asunto(s)
Acetilglucosamina/metabolismo , Adhesión Celular , Movimiento Celular , Adhesiones Focales/metabolismo , Integrina beta1/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Quinasa 1 de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/genética , Paxillin/metabolismo , Talina/metabolismo
12.
Biochem Biophys Res Commun ; 523(1): 226-232, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31858971

RESUMEN

The N-glycosylation of integrin α5ß1 is involved in multiple cell biological functions. Our group previously reported that the N-glycosylation of the Calf-1,2 domain on α5 subunit (S3-5,10-14) was important for its inhibitory effect on EGFR signaling through regulating α5-EGFR complex formation. In this follow-up study, we provide evidence that the N-glycosylation on integrin ß1 subunit suppress cell growth by promoting its association with EGFR under fibronectin (FN)-coated conditions. Expression of wild-type (WT) ß1, but not the N-glycosylation mutant S4-6 ß1, which contains fewer N-glycans, inhibited EGFR signaling and cell proliferation after cell adhesion to FN. Furthermore, consistent restoration of the N-glycans on sites 1-3 of ß1 reinstated the inhibitory effects. Mechanistically, the N-glycosylation mutant of ß1 (S4-6+1-3) inhibited the EGFR response upon EGF stimulation via facilitating the α5ß1-EGFR complex formation. Moreover, we identified the N-glycosylation of sites 10-14 on α5 and 1-3 on ß1 were most important for EGFR signaling. Taken together, these data indicate that α5S3-5+10-14ß1S4-6+1-3 mutant represents the minimal N-glycosylation required for its regulation on EGFR signaling and cell proliferation, providing a plausible mechanism for the crosstalk between with α5ß1 and EGFR.


Asunto(s)
Integrina alfa5beta1/metabolismo , Polisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Glicosilación , Humanos , Integrina alfa5beta1/genética , Mutación
13.
Biochem Biophys Res Commun ; 522(4): 903-909, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31806375

RESUMEN

The epithelial cell adhesion molecule (EpCAM) is one of the most frequently and intensely expressed of tumor-associated antigens, but the role that EpCAM plays in the proliferation, adhesion and migration properties of cancer cells remains unclear. In the present study, we screened several tumor cell lines and found that colorectal cancer CW-2 and epidermoid carcinoma A431 cells expressed relatively higher levels of EpCAM. In order to assess the biological functions of EpCAM expression in cell adhesion and migration, we established a knock out (KO) of EpCAM genes in both of these types of cancer cells via a CRISPR/Cas9 system. The elongated cell morphology was converted to a rounded morphology in the EpCAM-KO cells. These cells showed decreases in cell proliferation and migration into extracellular matrix proteins, as well as decreases in cellular signaling elements such as phosphorylated focal adhesion kinase (FAK), AKT and ERK. Moreover, the cell growth and the colony formation abilities were significantly decreased in EpCAM-KO cells. Importantly, co-immunoprecipitation analysis revealed that EpCAM associated with integrin ß1. Also, the expression levels of integrin α5 were decreased in EpCAM-KO cells, compared with that in the wild-type cells. Taken together, these data clearly demonstrate that EpCAM associates with integrin ß1 to regulate FAK/ERK signaling pathways in controlling cell adhesion, migration and proliferation via extracellular matrix adhesion, which provides novel mechanisms for EpCAM-mediated biological functions and cancer phenotypes.


Asunto(s)
Molécula de Adhesión Celular Epitelial/metabolismo , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Neoplasias/patología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Integrina alfa5/genética , Integrina beta1/genética , Neoplasias/genética , Transducción de Señal
14.
FASEB J ; 33(2): 2823-2835, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30307765

RESUMEN

N-Glycans are involved in numerous biologic processes, such as cell adhesion, migration, and invasion. To distinguish the functions of complex high-mannose types of N-glycans, we used the clustered, regularly interspaced, short palindromic repeats/Cas9 system to establish N-acetylglucosaminyltransferase (GnT)-I-knockout (KO) cells. Loss of GnT-I greatly induced cell-cell adhesion and decreased cell migration. In addition, the expression levels of epithelial-mesenchymal transition (EMT) markers such as α-SMA, vimentin, and N-cadherin were suppressed, whereas the expression of claudin-1 was promoted, suggesting a mesenchymal-epithelial transition-like phenotype, an opposite process to the EMT, was occurred in the KO cells. The phosphorylation levels of Smad-2, epidermal growth factor receptor, and integrin-mediated focal adhesion kinase (FAK) were consistently suppressed. Furthermore, the restoration of GnT-I in the KO cells suppressed the cell-cell adhesion and augmented the expression of EMT markers as well as that of FAK activation. The expression levels of integrins were upregulated in the KO cells, although their functions were decreased, whereas their expression levels were downregulated in the rescued cells, which suggests a negative feedback loop between function and expression. Finally, we also found that the expression of GnT-I was important for cell survival, resistance to cancer drugs, and increased colony formation. The results of the present study demonstrate that GnT-I works as a switch to turn on/off EMT, which further supports the notion that on most surface receptors, the N-glycans differentially play essential roles in biologic functions.-Zhang, G., Isaji, T., Xu, Z., Lu, X., Fukuda, T., Gu, J. N-acetylglucosaminyltransferase-I as a novel regulator of epithelial-mesenchymal transition.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , N-Acetilglucosaminiltransferasas/metabolismo , Sistemas CRISPR-Cas , Glicosilación , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Transducción de Señal
15.
J Biol Chem ; 291(11): 5708-5720, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26801611

RESUMEN

N-Acetylglucosaminyltransferase III (GnT-III), which catalyzes the addition of the bisecting GlcNAc branch on N-glycans, is usually described as a metastasis suppressor. Overexpression of GnT-III inhibited migration in multiple types of tumor cells. However, these results seem controversial to the clinical observations for the increased expression of GnT-III in human hepatomas, glioma, and ovarian cancers. Here, we present evidence that these inconsistencies are mainly attributed to the different expression pattern of cell sialylation. In detail, we show that overexpression of GnT-III significantly inhibits α2,3-sialylation but not α2,6-sialylation. The migratory ability of cells without or with a low level of α2,6-sialylation is consistently suppressed after GnT-III overexpression. In contrast, the effects of GnT-III overexpression are variable in tumor cells that are highly α2,6-sialylated. Overexpression of GnT-III promotes the cell migration in glioma cells U-251 and hepatoma cells HepG2, although it has little influence in human breast cancer cell MDA-MB-231 and gastric cancer cell MKN-45. Interestingly, up-regulation of α2,6-sialylation by overexpressing ß-galactoside α2,6-sialyltranferase 1 in the α2,6-hyposialylated HeLa-S3 cells abolishes the anti-migratory effects of GnT-III. Conversely, depletion of α2,6-sialylation by knock-out of ß-galactoside α2,6-sialyltranferase 1 in α2,6-hypersialylated HepG2 cells endows GnT-III with the anti-migratory ability. Taken together, our data clearly demonstrate that high expression of α2,6-sialylation on the cell surface could affect the anti-migratory role of GnT-III, which provides an insight into the mechanistic roles of GnT-III in tumor metastasis.


Asunto(s)
Antígenos CD/metabolismo , Movimiento Celular , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/metabolismo , Sialiltransferasas/metabolismo , Antígenos CD/genética , Línea Celular , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Humanos , N-Acetilglucosaminiltransferasas/genética , Neoplasias/genética , Neoplasias/patología , Sialiltransferasas/genética , Regulación hacia Arriba
16.
FASEB J ; 30(12): 4120-4131, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27565712

RESUMEN

N-Glycosylation of integrin α5ß1 plays important roles in cell biologic functions; however, the mechanisms that underlie those roles remain poorly understood. Here, we present evidence that the membrane-proximal N-glycosylation on integrin ß1 could positively regulate cell migration by promoting ß1 activation. The S4-6 ß1 mutant contains only 3 N-glycosylation sites, which are essential for α5 and ß1 heterodimer formation, and despite only a small difference in expression levels of α5ß1 between wild-type and S4-6 mutant, cell spreading and migration of the S4-6 mutant was significantly decreased compared with that of control. Consistent with these phenotypes, ß1-mediated cellular signaling and its activation were clearly suppressed in the S4-6 mutant. Of note, these developments could be rescued by restoration of N-glycosylation sites in the membrane-proximal domain. Further study on the regulatory mechanisms suggested that membrane-proximal N-glycosylation is critical for intermolecular interactions between integrin ß1 and other cell membrane proteins, such as syndecan-4 and epidermal growth factor receptor. Moreover, α2,6-sialylation is required for ß1 activation. These data suggest a novel regulatory mechanism wherein N-glycosylation near the cell membrane on ß1 may serve as a platform that facilitates its complex formation on the cell membrane, thereby affecting integrin-mediated functions.-Hou, S., Hang, Q., Isaji, T., Lu, J., Fukuda, T., Gu, J. Importance of membrane-proximal N-glycosylation on integrin ß1 in its activation and complex formation.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular/fisiología , Integrina beta1/metabolismo , Animales , Adhesión Celular , Cricetulus , Receptores ErbB/metabolismo , Glicosilación , Humanos , Integrina alfa5beta1/metabolismo , Sindecano-4/metabolismo
17.
J Biol Chem ; 290(49): 29345-60, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26483551

RESUMEN

Integrin α5ß1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5ß1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5ß1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5ß1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.


Asunto(s)
Receptores ErbB/metabolismo , Glicosilación , Integrina alfa5/metabolismo , Animales , Biotinilación , Células CHO , Proliferación Celular , Cricetinae , Cricetulus , Femenino , Células HEK293 , Células HeLa , Humanos , Microdominios de Membrana/química , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Trasplante de Neoplasias , Fosforilación , Estructura Terciaria de Proteína , Transducción de Señal
18.
J Biol Chem ; 290(28): 17566-75, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25979332

RESUMEN

Core fucosylation is catalyzed by α1,6-fucosyltransferase (FUT8), which transfers a fucose residue to the innermost GlcNAc residue via α1,6-linkage on N-glycans in mammals. We previously reported that Fut8-knock-out (Fut8(-/-)) mice showed a schizophrenia-like phenotype and a decrease in working memory. To understand the underlying molecular mechanism, we analyzed early form long term potentiation (E-LTP), which is closely related to learning and memory in the hippocampus. The scale of E-LTP induced by high frequency stimulation was significantly decreased in Fut8(-/-) mice. Tetraethylammonium-induced LTP showed no significant differences, suggesting that the decline in E-LTP was caused by postsynaptic events. Unexpectedly, the phosphorylation levels of calcium/calmodulin-dependent protein kinase II (CaMKII), an important mediator of learning and memory in postsynapses, were greatly increased in Fut8(-/-) mice. The expression levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the postsynaptic density were enhanced in Fut8(-/-) mice, although there were no significant differences in the total expression levels, implicating that AMPARs without core fucosylation might exist in an active state. The activation of AMPARs was further confirmed by Fura-2 calcium imaging using primary cultured neurons. Taken together, loss of core fucosylation on AMPARs enhanced their heteromerization, which increase sensitivity for postsynaptic depolarization and persistently activate N-methyl-d-aspartate receptors as well as Ca(2+) influx and CaMKII and then impair LTP.


Asunto(s)
Fucosiltransferasas/deficiencia , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Receptores AMPA/química , Receptores AMPA/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Femenino , Fucosa/metabolismo , Fucosiltransferasas/genética , Glicosilación , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Ratones Noqueados , Multimerización de Proteína , Transducción de Señal , Transmisión Sináptica
19.
Tumour Biol ; 37(8): 10763-73, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26873488

RESUMEN

Transforming growth factor (TGF)-ß1 is a significant stimulator of tumor invasion and metastasis. More recently, it has been found that TGF-ß1 acts through microRNAs to regulate their target genes to promote cancer progresses. However, such similar regulation is rarely reported in colorectal cancer (CRC). Here, we observed a decrease in TGF-ß1 expression in CRC specimens, compared with matched adjacent normal tissues. In parallel, there was an increase in miR-130b characterized in the same samples by microarray assay. Further, treatment of CRC cells with TGF-ß1 caused a significant decrease in the expression of miR-130b and an increased CRC cell migration. Luciferase reporter assay revealed that miR-130b directly targeted the 3' untranslated region (3'UTR) region of integrin α5 gene, which encodes a key molecule involved in cell motility. Subsequently, in the overexpression of miR-130b CRC cells, we observed a decreased level of integrin α5 protein. The regulation of integrin α5 by miR-130b was further shown using the miR-130b mimics and inhibitor of miR-130b. And, knockdown miR-130b with inhibitor in the overexpression of miR-130b CRC cells recovered integrin α5 expression and integrin α5-mediated cell motility. Moreover, the inverse relevance between miR-130b and integrin α5 was also observed in CRC specimens. At last, the enhancement of integrin α5 in TGF-ß1-treated cells can be reversed partly when rescuing miR-130b expression. Together, our findings suggested that TGF-ß1 acted through miR-130b to promote integrin α5 expression, resulting in the enhanced migration of CRC cells.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Integrina alfaV/fisiología , MicroARNs/genética , Proteínas de Neoplasias/fisiología , ARN Neoplásico/genética , Factor de Crecimiento Transformador beta1/fisiología , Regiones no Traducidas 3' , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Genes Reporteros , Humanos , Integrina alfaV/biosíntesis , Integrina alfaV/genética , Masculino , MicroARNs/biosíntesis , Persona de Mediana Edad , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Interferencia de ARN , ARN Neoplásico/biosíntesis , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/farmacología , Transfección , Factor de Crecimiento Transformador beta1/farmacología
20.
FASEB J ; 29(8): 3217-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25873065

RESUMEN

Up-regulation of core fucosylation catalyzed by α1,6-fucosyltransferase (Fut8) has been observed in hepatocellular carcinoma (HCC). Here, to explore the role of Fut8 expression in hepatocarcinogensis, we established the chemical-induced HCC models in the male wild-type (WT; Fut8(+/+)), hetero (Fut8(+/-)), and knockout (KO; Fut8(-/-)) mice by use of diethylnitrosamine (DEN) and pentobarbital (PB). In the Fut8(+/+) and Fut8(+/-) mice, multiple large and vascularized nodules were induced with an increased expression of Fut8 after DEN and PB treatment. However, the formation of HCC in Fut8(-/-) mice was suppressed almost completely. This potent inhibitory effect of Fut8 deficiency on tumorigenesis was also confirmed by the abolished tumor formation of Fut8 KO human hepatoma cell line cells by use of a xenograft tumor model. Furthermore, loss of the Fut8 gene resulted in attenuated responses to epidermal growth factor (EGF) and hepatocyte growth factor (HGF) in the HepG2 cell line, which provides the possible mechanisms for the contribution of Fut8 to hepatocarcinogensis. Taken together, our study clearly demonstrated that core fucosylation acts as a critical functional modulator in the liver and implicated Fut8 as a prognostic marker, as well as a novel, therapeutic target for HCC.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Regulación hacia Abajo/genética , Fucosiltransferasas/genética , Neoplasias Hepáticas/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/genética , Células Hep G2 , Factor de Crecimiento de Hepatocito/genética , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA