Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039147

RESUMEN

MOTIVATION: statistics from genome-wide association studies enable many valuable downstream analyses that are more efficient than individual-level data analysis while also reducing privacy concerns. As growing sample sizes enable better-powered analysis of gene-environment interactions, there is a need for gene-environment interaction-specific methods that manipulate and use summary statistics. RESULTS: We introduce two tools to facilitate such analysis, with a focus on statistical models containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure genome-wide interaction study to derive analogous sets of summary statistics with arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate multiple exposures from multiple studies. We demonstrate the value and efficiency of these tools by exploring alternative methods of accounting for ancestry-related population stratification in genome-wide interaction study in the UK Biobank as well as by conducting a multi-exposure genome-wide interaction study meta-analysis in cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the value of summary statistics from diverse and complex gene-environment interaction studies. AVAILABILITY AND IMPLEMENTATION: REGEM and METAGEM are open-source projects freely available at https://github.com/large-scale-gxe-methods/REGEM and https://github.com/large-scale-gxe-methods/METAGEM.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Tamaño de la Muestra , Interpretación Estadística de Datos , Polimorfismo de Nucleótido Simple , Fenotipo
2.
Lancet ; 397(10270): 208-219, 2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33453783

RESUMEN

BACKGROUND: Management of type 1 diabetes is challenging. We compared outcomes using a commercially available hybrid closed-loop system versus a new investigational system with features potentially useful for adolescents and young adults with type 1 diabetes. METHODS: In this multinational, randomised, crossover trial (Fuzzy Logic Automated Insulin Regulation [FLAIR]), individuals aged 14-29 years old, with a clinical diagnosis of type 1 diabetes with a duration of at least 1 year, using either an insulin pump or multiple daily insulin injections, and glycated haemoglobin (HbA1c) levels of 7·0-11·0% (53-97 mmol/mol) were recruited from seven academic-based endocrinology practices, four in the USA, and one each in Germany, Israel, and Slovenia. After a run-in period to teach participants how to use the study pump and continuous glucose monitor, participants were randomly assigned (1:1) using a computer-generated sequence, with a permuted block design (block sizes of two and four), stratified by baseline HbA1c and use of a personal MiniMed 670G system (Medtronic) at enrolment, to either use of a MiniMed 670G hybrid closed-loop system (670G) or the investigational advanced hybrid closed-loop system (Medtronic) for the first 12-week period, and then participants were crossed over with no washout period, to the other group for use for another 12 weeks. Masking was not possible due to the nature of the systems used. The coprimary outcomes, measured with continuous glucose monitoring, were proportion of time that glucose levels were above 180 mg/dL (>10·0 mmol/L) during 0600 h to 2359 h (ie, daytime), tested for superiority, and proportion of time that glucose levels were below 54 mg/dL (<3·0 mmol/L) calculated over a full 24-h period, tested for non-inferiority (non-inferiority margin 2%). Analysis was by intention to treat. Safety was assessed in all participants randomly assigned to treatment. This trial is registered with ClinicalTrials.gov, NCT03040414, and is now complete. FINDINGS: Between June 3 and Aug 22, 2019, 113 individuals were enrolled into the trial. Mean age was 19 years (SD 4) and 70 (62%) of 113 participants were female. Mean proportion of time with daytime glucose levels above 180 mg/dL (>10·0 mmol/L) was 42% (SD 13) at baseline, 37% (9) during use of the 670G system, and 34% (9) during use of the advanced hybrid closed-loop system (mean difference [advanced hybrid closed-loop system minus 670G system] -3·00% [95% CI -3·97 to -2·04]; p<0·0001). Mean 24-h proportion of time with glucose levels below 54 mg/dL (<3·0 mmol/L) was 0·46% (SD 0·42) at baseline, 0·50% (0·35) during use of the 670G system, and 0·46% (0·33) during use of the advanced hybrid closed-loop system (mean difference [advanced hybrid closed-loop system minus 670G system] -0·06% [95% CI -0·11 to -0·02]; p<0·0001 for non-inferiority). One severe hypoglycaemic event occurred in the advanced hybrid closed-loop system group, determined to be unrelated to study treatment, and none occurred in the 670G group. INTERPRETATION: Hyperglycaemia was reduced without increasing hypoglycaemia in adolescents and young adults with type 1 diabetes using the investigational advanced hybrid closed-loop system compared with the commercially available MiniMed 670G system. Testing an advanced hybrid closed-loop system in populations that are underserved due to socioeconomic factors and testing during pregnancy and in individuals with impaired awareness of hypoglycaemia would advance the effective use of this technology FUNDING: National Institute of Diabetes and Digestive and Kidney Diseases.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sistemas de Infusión de Insulina , Insulina/uso terapéutico , Adulto , Femenino , Alemania , Humanos , Hiperglucemia/prevención & control , Israel , Masculino , Estados Unidos , Adulto Joven
3.
N Engl J Med ; 381(18): 1707-1717, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31618560

RESUMEN

BACKGROUND: Closed-loop systems that automate insulin delivery may improve glycemic outcomes in patients with type 1 diabetes. METHODS: In this 6-month randomized, multicenter trial, patients with type 1 diabetes were assigned in a 2:1 ratio to receive treatment with a closed-loop system (closed-loop group) or a sensor-augmented pump (control group). The primary outcome was the percentage of time that the blood glucose level was within the target range of 70 to 180 mg per deciliter (3.9 to 10.0 mmol per liter), as measured by continuous glucose monitoring. RESULTS: A total of 168 patients underwent randomization; 112 were assigned to the closed-loop group, and 56 were assigned to the control group. The age range of the patients was 14 to 71 years, and the glycated hemoglobin level ranged from 5.4 to 10.6%. All 168 patients completed the trial. The mean (±SD) percentage of time that the glucose level was within the target range increased in the closed-loop group from 61±17% at baseline to 71±12% during the 6 months and remained unchanged at 59±14% in the control group (mean adjusted difference, 11 percentage points; 95% confidence interval [CI], 9 to 14; P<0.001). The results with regard to the main secondary outcomes (percentage of time that the glucose level was >180 mg per deciliter, mean glucose level, glycated hemoglobin level, and percentage of time that the glucose level was <70 mg per deciliter or <54 mg per deciliter [3.0 mmol per liter]) all met the prespecified hierarchical criterion for significance, favoring the closed-loop system. The mean difference (closed loop minus control) in the percentage of time that the blood glucose level was lower than 70 mg per deciliter was -0.88 percentage points (95% CI, -1.19 to -0.57; P<0.001). The mean adjusted difference in glycated hemoglobin level after 6 months was -0.33 percentage points (95% CI, -0.53 to -0.13; P = 0.001). In the closed-loop group, the median percentage of time that the system was in closed-loop mode was 90% over 6 months. No serious hypoglycemic events occurred in either group; one episode of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this 6-month trial involving patients with type 1 diabetes, the use of a closed-loop system was associated with a greater percentage of time spent in a target glycemic range than the use of a sensor-augmented insulin pump. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; iDCL ClinicalTrials.gov number, NCT03563313.).


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Adolescente , Adulto , Anciano , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diseño de Equipo , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Sistemas de Infusión de Insulina/efectos adversos , Masculino , Persona de Mediana Edad , Páncreas Artificial/efectos adversos , Adulto Joven
4.
Pediatr Diabetes ; 23(4): 439-446, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35138021

RESUMEN

Insulin is commonly used to reverse gluco-toxicity in youth with newly diagnosed type 2 diabetes (T2D), but many are subsequently weaned off insulin. We analyzed Pediatric Diabetes Consortium (PDC) data to determine how long glycemic control is maintained after termination of initial insulin treatment. Youth with T2D who had previously been on insulin but were on either an intensive lifestyle intervention alone or metformin alone upon enrollment in the PDC T2D Registry were studied (N = 183). The primary outcome was time to treatment failure, defined by need to restart insulin or metformin or another diabetes medication. Data were analyzed using logistic regression to assess risk factors for treatment failure. Of the 183 participants studied (mean age 15 years, diabetes duration 1.7 years), 54% experienced treatment failure (median follow-up time 1.7 years). In the subgroup on metformin monotherapy (N = 140), 45% subsequently required restart of insulin. Moreover, of participants in the subgroup treated with an intensive lifestyle intervention alone (N = 43), 81% restarted insulin or were treated with metformin or other diabetes medication. In both groups, median time to treatment failure was 1.2 years. Higher HbA1c at enrollment was significantly associated with treatment failure (p < 0.001). Youth with T2D who are initially treated with insulin have a high rate of treatment failure when switched to intensive lifestyle alone or metformin alone. Our data highlight the severe and progressive nature of youth onset T2D, hence patients should be monitored closely for deteriorating glycemic control after being weaned off insulin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Adolescente , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Metformina/uso terapéutico , Insuficiencia del Tratamiento
5.
Pediatr Diabetes ; 21(2): 224-232, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31886931

RESUMEN

BACKGROUND: Individual health behaviors (ie, eating habits and sedentary lifestyle) are associated with type 2 diabetes (T2D). Health behavior profiles specific to adolescents with T2D have not been described. OBJECTIVE: To identify health behavior profiles in adolescents with T2D and examine how these profiles change over time. METHODS: Diet (via food frequency questionnaire) and activity behaviors (via 3-day physical activity recall) examined at baseline, 6 months, and 24 months from participants in the the Treatment Options for T2D in Adolescents and Youth (TODAY) study were used for this analysis. Latent profile analysis identified profiles of health behaviors within three time points, and latent transition probabilities were estimated to examine the change from baseline to 6 months (n = 450) and baseline to 24 months (n = 415). Multinomial logistic regressions were used to examine if the assigned TODAY treatment group (Metformin [Met], Met + Rosiglitazone [Rosi], or Met + Lifestyle) predicted change in health behavior profiles. RESULTS: Three profiles emerged: "most sedentary," "healthy eaters," and "active and eat most." At 6 months, 50% of males and 29% of females in the Met + Lifestyle treatment group improved in their health behavior profile. Among males only, the Met + Lifestyle treatment group were more likely to improve their profiles from baseline to 6 months (P = .01). CONCLUSIONS: Three health behavior profiles emerged and shifted over time. A high quality, lifestyle intervention had little effect on improving health behavior profiles. Optimizing outcomes in youth with T2D might require more robust and multifaceted interventions beyond family-level lifestyle, including more extensive psychosocial intervention, novel medication regimen, or bariatric surgery.


Asunto(s)
Conducta del Adolescente , Diabetes Mellitus Tipo 2/psicología , Conductas Relacionadas con la Salud , Adolescente , Niño , Estudios de Cohortes , Estudios Transversales , Diabetes Mellitus Tipo 2/terapia , Femenino , Humanos , Masculino , Conducta de Reducción del Riesgo
6.
Curr Diab Rep ; 19(8): 60, 2019 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31327060

RESUMEN

PURPOSE OF REVIEW: A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS: Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.


Asunto(s)
Composición Corporal , Diabetes Gestacional , Animales , Peso al Nacer , Dieta , Femenino , Humanos , Obesidad , Embarazo
7.
Pediatr Diabetes ; 19(4): 823-831, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29464887

RESUMEN

BACKGROUND: Factitious hypoglycemia is a condition of self-induced hypoglycemia due to surreptitious administration of insulin or oral hypoglycemic agents. In adults, it is an uncommon, but well known clinical entity observed in individuals with and without diabetes. OBJECTIVES: To report a case of factitious hypoglycemia highlighting diagnostic pitfalls, to identify common characteristics of children and adolescents with factitious hypoglycemia, and to examine whether the information on long-term outcome exists. METHODS: We present a case of an adolescent with type 1 diabetes who had self-induced hypoglycemia of several years' duration; and we conducted a systematic literature review on factitious hypoglycemia in pediatric patients with diabetes. RESULTS: We identified a total of 83 articles of which 14 met the inclusion criteria (describing 39 cases). All but 1 individual had type 1 diabetes and the majority was female (63%). Average age was 13.5 ± 2.0 years with the youngest patient presenting at the age 9.5 years. Blood glucose control was poor (hemoglobin A1c: 12.1 ± 4.0%). In 35%, psychiatric disorders were mentioned as contributing factors. Only 3 reports provided follow-up beyond 6 months. CONCLUSIONS: Factitious hypoglycemia typically occurs in adolescents with type 1 diabetes who use insulin to induce hypoglycemia. Awareness of this differential diagnosis and knowledge of potentially misleading laboratory results may facilitate earlier recognition and intervention. Little information exists on effective treatments and long-term outcome.


Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico , Trastornos Fingidos/inducido químicamente , Trastornos Fingidos/diagnóstico , Hipoglucemia/inducido químicamente , Insulina/efectos adversos , Adolescente , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diagnóstico Diferencial , Femenino , Humanos , Hipoglucemia/diagnóstico , Insulina/administración & dosificación
9.
Curr Diab Rep ; 16(8): 74, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27319324

RESUMEN

Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics and mathematical modeling approaches, have provided the scientific community with new tools to describe the T2D metabolome. The metabolomics signatures associated with T2D and obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic amino acids, and long-chain fatty acids. Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific treatments.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolómica/métodos , Diabetes Mellitus Tipo 2/genética , Ambiente , Genoma , Humanos , Metaboloma/genética , Factores de Riesgo
10.
PLoS Genet ; 8(4): e1002605, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511876

RESUMEN

Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT-PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Impresión Genómica , Desnutrición , Animales , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Desnutrición/genética , Desnutrición/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo
11.
Environ Health ; 13(1): 6, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24499162

RESUMEN

BACKGROUND: Phthalates are ubiquitous endocrine disrupting chemicals associated with diabetes. Although women and minorities are more likely to be exposed to phthalates, no prior studies have examined phthalate exposure and markers of diabetes risk evaluating effect modification by gender and race/ethnicity. METHODS: We analyzed CDC data for 8 urinary phthalate metabolites from 3,083 non-diabetic, non-pregnant participants aged 12- < 80 years in the National Health and Nutrition Examination Survey (NHANES) 2001-2008. We used median regression to assess the associations between urinary phthalate metabolites and fasting blood glucose (FBG), fasting insulin and Homeostatic Model Assessment of insulin resistance (HOMA-IR), controlling for urinary creatinine as well as several sociodemographic and behavioral factors. Stratified analyses were conducted to compare the gender- and race/ethnicity-specific patterns for the associations. RESULTS: Urinary levels of several phthalate metabolites, including MBzP, MnBP, MiBP, MCPP and ∑DEHP showed significant positive associations with FBG, fasting insulin and HOMA-IR. No clear difference was noted between men and women. Mexican-Americans and non-Hispanic blacks had stronger dose-response relationships for MnBP, MiBP, MCPP and ∑DEHP compared to non-Hispanic whites. For example, the highest quartile of MiBP relative to its lowest quartile showed a median FBG increase of 5.82 mg/dL (95% CI: 3.77, 7.87) in Mexican-Americans, 3.63 mg/dL (95% CI: 1.23, 6.03) in blacks and 1.79 mg/dL (95% CI: -0.29, 3.87) in whites. CONCLUSIONS: The findings suggest that certain populations may be more vulnerable to phthalates with respect to disturbances in glucose homeostasis. Whether endocrine disrupting chemicals contribute to gender and racial/ethnic differences in diabetes risk will be an important area for further study.


Asunto(s)
Diabetes Mellitus Tipo 2/etnología , Disruptores Endocrinos/orina , Contaminantes Ambientales/orina , Ácidos Ftálicos/orina , Adolescente , Adulto , Anciano , Población Negra , Glucemia/análisis , Niño , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/orina , Monitoreo del Ambiente , Femenino , Humanos , Insulina/sangre , Masculino , Americanos Mexicanos , Persona de Mediana Edad , Encuestas Nutricionales , Riesgo , Factores Sexuales , Población Blanca , Adulto Joven
12.
JAMA Netw Open ; 7(2): e240447, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38421647

RESUMEN

Importance: Youth-onset type 2 diabetes (T2D) has a more aggressive phenotype than adult-onset T2D, including rapid loss of glycemic control and increased complication risk. Objective: To identify associations of growth hormone mediators with glycemic failure, beta cell function, and insulin sensitivity in youth-onset T2D. Design, Setting, and Participants: This post hoc secondary analysis of the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) randomized clinical trial, which enrolled participants from July 2004 to February 2009, included 398 participants from 15 university-affiliated medical centers with available plasma samples from baseline and 36 months. Participants were youths aged 10 to 17 years with a duration of T2D of less than 2 years who were randomized to metformin, metformin plus lifestyle intervention, or metformin plus rosiglitazone. Participants were followed up for a mean (SD) of 3.9 (1.5) years during the trial, ending in 2011. Statistical analysis was performed from August 2022 to November 2023. Exposure: Plasma insulin-like growth factor-1 (IGF-1), growth hormone receptor (GHR), and insulin-like growth factor binding protein 1 (IGFBP-1). Main Outcomes and Measures: Main outcomes were (1) loss of glycemic control during the TODAY study, defined as hemoglobin A1c (HbA1c) level of 8% or more for 6 months or inability to wean from insulin therapy, and (2) baseline and 36-month measures of glycemia (fasting glucose, HbA1c), insulin sensitivity (1/fasting C-peptide), high-molecular-weight adiponectin, and beta cell function (C-peptide index, C-peptide oral disposition index). Results: This analysis included 398 participants (mean [SD] age, 13.9 [2.0] years; 248 girls [62%]; 166 Hispanic participants [42%]; 134 non-Hispanic Black participants [34%], and 84 non-Hispanic White participants [21%]). A greater increase in IGF-1 level between baseline and 36 months was associated with lower odds of glycemic failure (odds ratio [OR], 0.995 [95% CI, 0.991-0.997]; P < .001) and higher C-peptide index per 100-ng/mL increase in IGF-1 (ß [SE], 0.015 [0.003]; P < .001). A greater increase in log2 GHR level between baseline and 36 months was associated with higher odds of glycemic failure (OR, 1.75 [95% CI, 1.05-2.99]; P = .04) and lower C-peptide index (ß [SE], -0.02 [0.006]; P < .001). A greater increase in log2 IGFBP-1 level between baseline and 36 months was associated with higher odds of glycemic failure (OR, 1.37 [95% CI, 1.09-1.74]; P = .007) and higher high-molecular-weight adiponectin (ß [SE], 431 [156]; P = .007). Conclusions and Relevance: This study suggests that changes in plasma growth hormone mediators are associated with loss of glycemic control in youth-onset T2D, with IGF-1 associated with lower risk and GHR and IGFBP-1 associated with increased risk. Trial Registration: ClinicalTrials.gov Identifier: NCT00081328.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Adulto , Femenino , Adolescente , Humanos , Hormona del Crecimiento , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Control Glucémico , Adiponectina , Péptido C , Hemoglobina Glucada , Metformina/uso terapéutico
13.
Diabetes Technol Ther ; 26(5): 307-312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315503

RESUMEN

Background: We evaluated accuracy and safety of a seventh-generation real-time continuous glucose monitoring (CGM) system during pregnancy. Materials and Methods: Evaluable data for accuracy analysis were obtained from 96 G7 sensors (Dexcom, Inc.) worn by 96 of 105 enrolled pregnant women with type 1 (n = 59), type 2 (n = 21), or gestational diabetes (n = 25). CGM values were compared with arterialized venous glucose values from the YSI comparator instrument during 6-h clinic sessions at different time points throughout the sensors' 10-day wear period. The primary endpoint was the proportion of CGM values in the 70-180 mg/dL range within 15% of comparator glucose values. Secondary endpoints included the proportion of CGM values within 20% or 20 mg/dL of comparator values ≥ or <100 mg/dL, respectively (the %20/20 agreement rate). Results: Of the 1739 pairs with CGM in the 70-180 mg/dL range, 83.2% were within 15% of comparator values. The lower bound of the 95% confidence interval was 79.8%. Of the 2102 pairs with CGM values in the 40-400 mg/dL range, the %20/20 agreement rate was 92.5%. Of the 1659 pairs with comparator values in the 63-140 mg/dL range, the %20/20 agreement rate was 92.3%. The %20/20 agreement rates on days 1, 4 and 7, and 10 were 78.6%, 96.3%, and 97.3%, respectively. Consensus error grid analysis showed 99.8% of pairs in the clinically acceptable A and B zones. There were no serious adverse events. The sensors' 10-day survival rate was 90.3%. Conclusion: The G7 system is accurate and safe during pregnancies complicated by diabetes and does not require confirmatory fingerstick testing. Clinical Trial Registration: clinicaltrials.gov NCT04905628.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Embarazo en Diabéticas , Humanos , Femenino , Embarazo , Adulto , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Embarazo en Diabéticas/sangre , Embarazo en Diabéticas/tratamiento farmacológico , Diabetes Gestacional/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Adulto Joven , Monitoreo Continuo de Glucosa
14.
Diabetes Care ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935559

RESUMEN

OBJECTIVE: We aimed to identify metabolites associated with loss of glycemic control in youth-onset type 2 diabetes. RESEARCH DESIGN AND METHODS: We measured 480 metabolites in fasting plasma samples from the TODAY (Treatment Options for Type 2 Diabetes in Adolescents and Youth) study. Participants (N = 393; age 10-17 years) were randomly assigned to metformin, metformin plus rosiglitazone, or metformin plus lifestyle intervention. Additional metabolomic measurements after 36 months were obtained in 304 participants. Cox models were used to assess baseline metabolites, interaction of metabolites and treatment group, and change in metabolites (0-36 months), with loss of glycemic control adjusted for age, sex, race, treatment group, and BMI. Metabolite prediction models of glycemic failure were generated using elastic net regression and compared with clinical risk factors. RESULTS: Loss of glycemic control (HbA1c ≥8% or insulin therapy) occurred in 179 of 393 participants (mean 12.4 months). Baseline levels of 33 metabolites were associated with loss of glycemic control (q < 0.05). Associations of hexose and xanthurenic acid with treatment failure differed by treatment randomization; youths with higher baseline levels of these two compounds had a lower risk of treatment failure with metformin alone. For three metabolites, changes from 0 to 36 months were associated with loss of glycemic control (q < 0.05). Changes in d-gluconic acid and 1,5-AG/1-deoxyglucose, but not baseline levels of measured metabolites, predicted treatment failure better than changes in HbA1c or measures of ß-cell function. CONCLUSIONS: Metabolomics provides insight into circulating small molecules associated with loss of glycemic control and may highlight metabolic pathways contributing to treatment failure in youth-onset diabetes.

15.
Children (Basel) ; 11(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38929210

RESUMEN

Diabetes exposure during pregnancy affects health outcomes in offspring; however, little is known about in utero exposure to preexisting parental youth-onset type 2 diabetes. Offspring born to participants during the Treatment Options for Type 2 Diabetes in Adolescent and Youth (TODAY) study were administered a questionnaire at the end of the study. Of 457 participants, 37% of women and 18% of men reported 228 offspring, 80% from female participants. TODAY mothers had lower household income (<$25,000) compared to TODAY fathers (69.4% vs. 37.9%, p = 0.0002). At 4.5 years of age (range 0-18 years), 16.7% of offspring were overweight according to the parental report of their primary care provider, with no sex difference. Offspring of TODAY mothers reported more daily medication use compared to TODAY fathers (50/183, 27.7% vs. 6/46, 12.2%, [p = 0.04]), a marker of overall health. TODAY mothers also reported higher rates of recidivism (13/94) than TODAY fathers (0/23). An Individualized Education Plan was reported in 20/94 (21.3%) offspring of TODAY mothers compared to 2/23 (8.7%) of TODAY fathers. This descriptive study, limited by parental self-reports, indicated offspring of participants in TODAY experience significant socioeconomic disadvantages, which, when combined with in utero diabetes exposure, may increase their risk of health and educational disparities.

16.
Nat Metab ; 6(2): 226-237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278947

RESUMEN

The prevalence of youth-onset type 2 diabetes (T2D) and childhood obesity has been rising steadily1, producing a growing public health concern1 that disproportionately affects minority groups2. The genetic basis of youth-onset T2D and its relationship to other forms of diabetes are unclear3. Here we report a detailed genetic characterization of youth-onset T2D by analysing exome sequences and common variant associations for 3,005 individuals with youth-onset T2D and 9,777 adult control participants matched for ancestry, including both males and females. We identify monogenic diabetes variants in 2.4% of individuals and three exome-wide significant (P < 2.6 × 10-6) gene-level associations (HNF1A, MC4R, ATXN2L). Furthermore, we report rare variant association enrichments within 25 gene sets related to obesity, monogenic diabetes and ß-cell function. Many youth-onset T2D associations are shared with adult-onset T2D, but genetic risk factors of all frequencies-and rare variants in particular-are enriched within youth-onset T2D cases (5.0-fold increase in the rare variant and 3.4-fold increase in common variant genetic liability relative to adult-onset cases). The clinical presentation of participants with youth-onset T2D is influenced in part by the frequency of genetic risk factors within each individual. These findings portray youth-onset T2D as a heterogeneous disease situated on a spectrum between monogenic diabetes and adult-onset T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Masculino , Adulto , Femenino , Humanos , Adolescente , Niño , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Exoma , Estudio de Asociación del Genoma Completo , Biología
17.
Nutrients ; 15(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36678154

RESUMEN

Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.


Asunto(s)
Leche Humana , S-Adenosilmetionina , Adulto , Niño , Lactante , Femenino , Humanos , S-Adenosilmetionina/metabolismo , Cromatografía Liquida , Leche Humana/metabolismo , Carbono , Espectrometría de Masas en Tándem , Metionina/metabolismo , Racemetionina , S-Adenosilhomocisteína/metabolismo , Homocisteína
18.
J Diabetes Sci Technol ; 17(4): 935-942, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35473359

RESUMEN

BACKGROUND: We investigated the potential benefits of automated insulin delivery (AID) among individuals with type 1 diabetes (T1D) in sub-populations of baseline device use determined by continuous glucose monitor (CGM) use status and insulin delivery via multiple daily injections (MDI) or insulin pump. MATERIALS AND METHODS: In a six-month randomized, multicenter trial, 168 individuals were assigned to closed-loop control (CLC, Control-IQ, Tandem Diabetes Care), or sensor-augmented pump (SAP) therapy. The trial included a two- to eight-week run-in phase to train participants on study devices. The participants were stratified into four subgroups: insulin pump and CGM (pump+CGM), pump-only, MDI and CGM (MDI+CGM), and MDI users without CGM (MDI-only) users. We compared glycemic outcomes among four subgroups. RESULTS: At baseline, 61% were pump+CGM users, 18% pump-only users, 10% MDI+CGM users, and 11% MDI-only users. Mean time in range 70-180 mg/dL (TIR) improved from baseline in the four subgroups using CLC: pump+CGM, 62% to 73%; pump-only, 61% to 70%; MDI+CGM, 54% to 68%; and MDI-only, 61% to 69%. The reduction in time below 70 mg/dL from baseline was comparable among the four subgroups. No interaction effect was detected with baseline device use for TIR (P = .67) or time below (P = .77). On the System Usability Questionnaire, scores were high at 26 weeks for all subgroups: pump+CGM: 87.2 ± 12.1, pump-only: 89.4 ± 8.2, MDI+CGM 87.2 ± 9.3, MDI: 78.1 ± 15. CONCLUSIONS: There was a consistent benefit in patients with T1D when using CLC, regardless of baseline insulin delivery modality or CGM use. These data suggest that this CLC system can be considered across a wide range of patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes , Automonitorización de la Glucosa Sanguínea , Glucemia , Insulina , Insulina Regular Humana/uso terapéutico , Sistemas de Infusión de Insulina
19.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503212

RESUMEN

Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3- dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate a complex relationship between milk CMV, milk kynurenine, and infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full term infant development.

20.
J Clin Endocrinol Metab ; 108(5): 1120-1131, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36446741

RESUMEN

CONTEXT: Prenatal exposures, including undernutrition, overnutrition, and parental diabetes, are recognized risk factors for future cardiometabolic disease. There are currently no data on effects of parental diabetes on disease progression or complications in youth-onset type 2 diabetes (T2D). OBJECTIVE: We analyzed effects of parental diabetes history on glycemic outcomes, ß-cell function, and complications in a US cohort of youth-onset T2D. METHODS: Participants (N = 699) aged 10 to 17 years with T2D were enrolled at 15 US centers and followed for up to 12 years as part of the TODAY (Treatment Options for type 2 Diabetes in Adolescents and Youth) and TODAY2 follow-up studies. Information about diabetes diagnosis in biological mothers was available for 621 participants (never = 301; before or during pregnancy = 218; after pregnancy = 102) and in biological fathers for 519 (no diabetes = 352; paternal diabetes = 167). RESULTS: Maternal, but not paternal, diabetes was associated with loss of glycemic control over time, defined as glycated hemoglobin A1c greater than or equal to 8% for more than 6 months (P = .001). Similarly, maternal, but not paternal, diabetes was associated with increased risk of glomerular hyperfiltration (P = .01) and low heart rate variability (P = .006) after 12 years of follow-up. Effects were largely independent of age, sex, race/ethnicity, and household income. Maternal diabetes during vs after pregnancy had similar effects on outcomes. CONCLUSION: Maternal diabetes, regardless of whether diagnosed during vs after pregnancy, is associated with worse glycemic control, glomerular hyperfiltration, and reduced heart rate variability in youth with T2D in TODAY. The strong associations of diabetes outcomes with maternal diabetes suggest a possible role for in utero programming.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Masculino , Embarazo , Femenino , Humanos , Adolescente , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Gestacional/epidemiología , Factores de Riesgo , Hemoglobina Glucada , Estudios de Seguimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA