Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112625

RESUMEN

The involvement of the human amygdala in facial mimicry remains a matter of debate. We investigated neural activity in the human amygdala during a task in which an imitation task was separated in time from an observation task involving facial expressions. Neural activity in the amygdala was measured using functional magnetic resonance imaging in 18 healthy individuals and using intracranial electroencephalogram in six medically refractory patients with epilepsy. The results of functional magnetic resonance imaging experiment showed that mimicry of negative and positive expressions activated the amygdala more than mimicry of non-emotional facial movements. In intracranial electroencephalogram experiment and time-frequency analysis, emotion-related activity of the amygdala during mimicry was observed as a significant neural oscillation in the high gamma band range. Furthermore, spectral event analysis of individual trial intracranial electroencephalogram data revealed that sustained oscillation of gamma band activity originated from an increased number and longer duration of neural events in the amygdala. Based on these findings, we conclude that during facial mimicry, visual information of expressions and feedback from facial movements are combined in the amygdalar nuclei. Considering the time difference of information approaching the amygdala, responses to facial movements are likely to modulate rather than initiate affective processing in human participants.


Asunto(s)
Electrocorticografía , Conducta Imitativa , Humanos , Emociones/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética/métodos , Hemodinámica , Expresión Facial , Mapeo Encefálico/métodos
2.
Acta Neurochir (Wien) ; 166(1): 18, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231293

RESUMEN

BACKGROUND: The use of anchor bolts to secure electrodes to the skull can be difficult in some clinical situations. Herein, we present the boltless technique to secure electrodes to the scalp using nylon sutures to overcome the problems associated with anchor bolts. We investigated the safety, accuracy errors, and patient-related and operative factors affecting errors in the boltless technique. METHODS: This single-institution retrospective series analyzed 103 electrodes placed in 12 patients. The target-point localization error (TPLE), entry-point localization error (EPLE), radial error (RE), and depth error (DE) of the electrodes were calculated. RESULTS: The median of the mean operative time per electrode was 9.3 min. The median TPLE, EPLE, RE, and absolute DE value were 4.1 mm, 1.6 mm, 2.7 mm, and 1.9 mm, respectively. Positive correlations were observed between the preoperative scalp thickness, mean operative time per electrode, EPLE, RE, and the absolute value of DE versus TPLE (r = .228, p = .02; r = .678, p = .015; r = .228, p = .02; r = .445, p < .01; r = .630, p < .01, respectively), and electrode approach angle versus EPLE (r = .213, p = .031). Multivariate analysis revealed that the absolute value of DE had the strongest influence on the TPLE, followed by RE and preoperative scalp thickness, respectively (ß = .938, .544, .060, respectively, p < .001). No complications related to SEEG insertion and monitoring were encountered. CONCLUSION: The boltless technique using our unique planning and technical method is a safe, effective, and low-cost alternative in cases where anchor bolts are contraindicated.


Asunto(s)
Electroencefalografía , Nylons , Humanos , Estudios Retrospectivos , Cuero Cabelludo , Técnicas de Sutura , Suturas
3.
No Shinkei Geka ; 51(1): 17-28, 2023 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-36682745

RESUMEN

Understanding the semiology and underlying anatomy of each seizure is essential for epilepsy surgeons. According to the International League Against Epilepsy(ILAE)classification in 2017, seizure types are classified as focal, generalized, or unknown onset, all of which are further classified as motor or non-motor onset. Impairment of awareness is involved in consciousness systems(consisting of subcortical structures such as the thalamus and upper brain stem)and cortical structures(including the frontoparietal association cortices). Seizures with motor features are divided into elementary symptoms for which myoclonic, clonic, and tonic expressions reflect the somatotopy of the primary motor cortex; and integrated or gestural motor expression representing activation of the motor association cortex. A rostrocaudal gradient is demonstrated in hyperkinetic movements in frontal lobe epilepsy. Non-motor epileptic features should be understood together with auras, which correspond to focal aware seizures and hold crucial localizing semiologic values. The correlation between functional anatomy and seizure semiology is justified by invasive recordings such as stereotactic electroencephalography and subdural recordings, and also confirmed by seizure outcomes after resection of supposed epileptogenic zones. In addition to the conventional localization theory, it is necessary to consider the neural network theory for further recognition of the functionally anatomical basis in an incomprehensible demonstration of seizures.


Asunto(s)
Epilepsias Parciales , Epilepsia , Corteza Motora , Humanos , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Electroencefalografía
4.
No Shinkei Geka ; 44(4): 283-93, 2016 Apr.
Artículo en Japonés | MEDLINE | ID: mdl-27056869

RESUMEN

It has been pointed out that the motor evoked potential(MEP)with a subdural electrode is useful in the intraoperative monitoring for unruptured aneurysm surgery. However, in some cases, we experienced postoperative ischemic complications despite evaluating the motor function via MEP monitoring. Herein, we have reported the usefulness and problems of intraoperative monitoring with MEP to evaluate brain dysfunction caused by insufficiency of cerebral blood flow. Out of 279 aneurysm surgery procedures, we performed MEP monitoring in 142 cases and successfully recorded in 126 cases. We compared the ischemic complication rate of the group for which MEP was monitored with that of the group for which MEP was not monitored. The whole ischemic complication rate was decreased in the group that underwent MEP monitoring. Thus, it was suggested that MEP monitoring was useful for avoiding ischemic complications. In internal carotid artery aneurysms, the amplitude of MEP changed and recovered in 2 cases and disappeared in one case. In anterior cerebral artery aneurysms, the amplitude of MEP changed and recovered in 2 cases. In middle cerebral artery aneurysms, the amplitude of MEP changed and recovered in 5 cases. We could avoid ischemic complications by intraoperative MEP monitoring in many cases. However, in some cases, we found ischemic complications that were not detected by MEP monitoring with a subdural electrode. In these cases, transcranial stimulation in combination with subdural electrode might be effective in avoiding ischemic complications that might occur after dural closure.


Asunto(s)
Potenciales Evocados Motores , Aneurisma Intracraneal/fisiopatología , Adulto , Anciano , Angiografía Cerebral , Electroencefalografía , Femenino , Humanos , Imagenología Tridimensional , Aneurisma Intracraneal/cirugía , Masculino , Persona de Mediana Edad , Monitoreo Intraoperatorio
5.
Epilepsia Open ; 9(2): 592-601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173171

RESUMEN

OBJECTIVE: Patients with epilepsy have high risk of experiencing uncommon causes of death. This study aimed to evaluate patients who underwent unusual deaths related to epilepsy and identify factors that may contribute to these deaths and may also include sudden unexpected death in epilepsy (SUDEP). METHODS: We analyzed 5291 cases in which a postmortem imaging (PMI) study was performed using plane CT, because of an unexplained death. A rapid troponin T assay was performed using peripheral blood samples. Clinical information including the cause of death suspected by the attending physician, body position, place of death, medical history, and antiseizure medications was evaluated. RESULTS: A total of 132 (2.6%) patients had an obvious history of epilepsy, while 5159 individuals had no history of epilepsy (97.4%). Cerebrovascular disease was the cause of death in 1.6% of patients in the group with epilepsy, and this was significantly lower than that in the non-epilepsy group. However, drowning was significantly higher (9.1% vs. 4.4%). Unspecified cause of death was significantly more frequent in the epilepsy group (78.0% vs. 57.8%). Furthermore, the proportion of patients who demonstrated elevation of troponin T levels without prior cardiac disease was significantly higher in the epilepsy group (37.9% vs. 31.1%). At discovery of death, prone position was dominant (30.3%), with deaths occurring most commonly in the bedroom (49.2%). No antiseizure medication had been prescribed in 12% of cases, while 29.5% of patients were taking multiple antiseizure medications. SIGNIFICANCE: The prevalence of epilepsy in individuals experiencing unusual death was higher than in the general population. Despite PMI studies, no definitive cause of death was identified in a significant proportion of cases. The high troponin T levels may be explained by long intervals between death and examination or by higher incidence of myocardial damage at the time of death. PLAIN LANGUAGE SUMMARY: This study investigated unusual deaths in epilepsy patients, analyzing 5291 postmortem imaging cases. The results showed that 132 cases (2.6%) had a clear history of epilepsy. In these cases, only 22% cases were explained after postmortem examination, which is less than in non-epilepsy group (42.2%). Cerebrovascular disease was less common in the epilepsy group, while drowning was more common. Elevated troponin T levels, which suggest possibility of myocardial damage or long intervals between death and examination, were also more frequent in the epilepsy group compared to non-epilepsy group.


Asunto(s)
Trastornos Cerebrovasculares , Ahogamiento , Epilepsia , Humanos , Imágenes Post Mortem , Troponina T/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/diagnóstico , Autopsia
6.
Parkinsonism Relat Disord ; 121: 106034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382401

RESUMEN

INTRODUCTION: Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS: We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS: We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION: In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.


Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/cirugía , Temblor , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Cerebelo/diagnóstico por imagen , Cognición
7.
Neurol Med Chir (Tokyo) ; 64(4): 137-146, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355128

RESUMEN

Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for essential tremor (ET). However, its long-term outcomes and prognostic factors remain unclear. This study aimed to retrospectively investigate 38 patients with ET who underwent MRgFUS thalamotomy and were followed up for >2 years. The improvement in tremor was evaluated using the Clinical Rating Scale for Tremor (CRST). Adverse events were documented, and correlations with factors, such as skull density ratio (SDR), maximum mean temperature (T-max), and lesion size, were examined. Furthermore, the outcomes were compared between two groups, one that met the cutoff values, which was previously reported (preoperative CRST-B ≤ 25, T-max ≥ 52.5°C, anterior-posterior size of lesion ≥ 3.9 mm, superior-inferior [SI] size of lesion > 5.5 mm), and the other that did not. The improvement rate was 59.4% on average at the 2-year follow-up. Adverse events, such as numbness (15.8%), dysarthria (10.5%), and lower extremity weakness (2.6%), were observed even after 2 years, although these were mild. The factors correlated with tremor improvement were the T-max and SI size of the lesion (p < 0.05), whereas the SDR showed no significance. Patients who met the aforementioned cutoff values demonstrated a 69.8% improvement at the 2-year follow-up, whereas others showed a 43.6% improvement (p < 0.05). In conclusion, MRgFUS is effective even after 2 years. The higher the T-max and the larger the lesion size, the better the tremor control. Previously reported cutoff values clearly predict the 2-year prognosis, indicating the usefulness of MRgFUS.


Asunto(s)
Temblor Esencial , Humanos , Estudios de Seguimiento , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Estudios Retrospectivos , Temblor , Pronóstico , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética , Resultado del Tratamiento , Espectroscopía de Resonancia Magnética
8.
NMC Case Rep J ; 10: 15-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873746

RESUMEN

Central poststroke pain is a chronic, intractable, central neuropathic pain. Spinal cord stimulation is a neuromodulation therapy for chronic neuropathic pain. The conventional stimulation method induces a sense of paresthesia. Fast-acting subperception therapy is one of the latest new stimulation methods without paresthesia. A case of achieving pain relief of central poststroke pain affecting both the arm and leg on one side by double-independent dual-lead spinal cord stimulation using fast-acting subperception therapy stimulation is presented. A 67-year-old woman had central poststroke pain due to a right thalamic hemorrhage. The numerical rating scale scores of the left arm and leg were 6 and 7, respectively. Using dual-lead stimulation at the Th 9-11 levels, a spinal cord stimulation trial was performed. Fast-acting subperception therapy stimulation achieved pain reduction in the left leg from 7 to 3. Therefore, a pulse generator was implanted, and the pain relief continued for 6 months. Then, two additional leads were implanted at the C 3-5 levels, and pain in the arm decreased from 6 to 4. Independent setting and adjustments of the dual-lead stimulation were required because the thresholds of paresthesia perception were significantly different. To achieve pain relief in both the arm and leg, double-independent dual-lead stimulation placed at cervical and thoracic levels is an effective treatment. Fast-acting subperception therapy stimulation may be effective for central poststroke pain, especially in cases where the paresthesia is perceived as uncomfortable or the conventional stimulation itself is ineffective.

9.
Neurol Med Chir (Tokyo) ; 63(5): 179-190, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37005247

RESUMEN

Stereotactic electroencephalography (SEEG) is receiving increasing attention as a safe and effective technique in the invasive evaluation for epileptogenic zone (EZ) detection. The main clinical question is whether the use of SEEG truly improves outcomes. Herein, we compared outcomes in our patients after three types of intracranial EEG (iEEG): SEEG, the subdural electrode (SDE), and a combined method using depth and strip electrodes. We present here our preliminary results from two demonstrative cases. Several international reports from large epilepsy centers found the following clinical advantages of SEEG: 1) three-dimensional analysis of structures, including bilateral and multilobar structures; 2) low rate of complications; 3) less pneumoencephalopathy and less patient burden during postoperative course, which allows the initiation of video-EEG monitoring immediately after implantation and does not require resection to be performed in the same hospitalization; and 4) a higher rate of good seizure control after resection. In other words, SEEG more accurately identified the EZ than the SDE method. We obtained similar results in our preliminary experiences under limited conditions. In Japan, as of August 2022, dedicated electrodes and SEEG accessories have not been approved and the use of the robot arm is not widespread. The Japanese medical community is hopeful that these issues will soon be resolved and that the experience with SEEG in Japan will align with that of large epilepsy centers internationally.


Asunto(s)
Epilepsia , Técnicas Estereotáxicas , Humanos , Japón , Electrodos Implantados , Epilepsia/diagnóstico , Epilepsia/cirugía , Electroencefalografía/métodos
10.
Sci Rep ; 13(1): 10632, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391474

RESUMEN

This work aimed to investigate the involvement of the thalamic nuclei in mesial temporal lobe epilepsy (MTLE) and identify the influence of interictal epileptic discharges on the neural basis of memory processing by evaluating the functional connectivity (FC) between the thalamic nuclei and default mode network-related area (DMNRA) using magnetoencephalography. Preoperative datasets of nine patients with MTLE with seizure-free status after surgery and those of nine healthy controls were analyzed. The FC between the thalamic nuclei (anterior nucleus [ANT], mediodorsal nucleus [MD], intralaminar nuclei [IL]), hippocampus, and DMNRA was examined for each of the resting, pre-spike, spike, and post-spike periods in the delta to ripple bands using magnetoencephalography. The FC between the ANT, MD, hippocampus, and medial prefrontal cortex increased in the gamma to ripple bands, whereas the FC between the ANT, IL, and DMNRA decreased in the delta to beta bands, compared with that of the healthy controls at rest. Compared with the rest period, the pre-spike period had significantly decreased FC between the ANT, MD, and DMNRA in the ripple band. Different FC changes between the thalamic nuclei, hippocampus, and DMNRA of specific connections in a particular band may reflect impairment or compensation in the memory processes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Magnetoencefalografía , Red en Modo Predeterminado , Núcleos Talámicos , Memoria
11.
Trials ; 24(1): 395, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37308986

RESUMEN

BACKGROUND: Neuropathic pain after spinal cord injury (SCI), both traumatic and non-traumatic, is refractory to various treatments. Spinal cord stimulation (SCS) is one of the neuromodulation therapies for neuropathic pain, although SCS has insufficient efficacy for neuropathic pain after SCI. The reasons are presumed to be inappropriate locations of SCS leads and conventional tonic stimulation itself does not have a sufficient analgesic effect for the pain. In patients with past spinal surgical histories, the cylinder-type leads are likely to be placed on the caudal side of the SCI because of surgical adhesions. Differential target multiplexed (DTM) stimulation is one of the latest new stimulation patterns that is superior to conventional stimulation. METHODS: A single-center, open-label, randomized, two-way crossover trial is planned to investigate the efficacy of SCS using DTM stimulation placing a paddle lead at the appropriate site for neuropathic pain after SCI in patients with spinal surgical histories. The paddle-type lead delivers energy more efficiently than a cylinder-type lead. This study consists of two steps: SCS trial (first step) and SCS system implantation (second step). The primary outcome is rates of achieving pain improvement with more than 33% reduction 3 months after SCS system implantation. The secondary outcomes are to be evaluated as follows: (1) effectiveness of DTM and tonic stimulations during the SCS trial; (2) changes of assessment items from 1 to 24 months; (3) relationships between the result of the SCS trial and the effects 3 months after SCS system implantation; (4) preoperative factors associated with a long-term effect, defined as continuing for more than 12 months; and (5) whether gait function improves from 1 to 24 months. DISCUSSION: A paddle-type lead placed on the rostral side of SCI and using DTM stimulation may provide significant pain relief for patients with intractable neuropathic pain after SCI in patients with past spinal surgical histories. TRIAL REGISTRATION: Japan Registry of Clinical Trials (jRCT) jRCT 1042220093. Registered on 21 November 2022, and last modified on 6 January 2023. jRCT is approved as a member of the Primary Registry Network of WHO ICTRP.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Pacientes , Implantación del Embrión , Niacinamida , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Trials ; 24(1): 604, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742013

RESUMEN

BACKGROUND: Spinal cord stimulation (SCS) is one of the neuromodulation therapies for chronic neuropathic pain. The conventional paresthesia-based SCS involves the application of tonic stimulation that induces a sense of paresthesia. Recently, new SCS stimulation patterns without paresthesia have been developed. Differential target multiplexed (DTM) stimulation and fast-acting subperception therapy (FAST) stimulation are the latest paresthesia-free SCS patterns. METHODS: A single-center, open-label, crossover, randomized clinical trial to investigate the superiority of SCS using the latest new stimulation patterns over conventional tonic stimulation for neuropathic pain is planned. This study consists of two steps: SCS trial (first step) and SCS system implantation (second step). In the SCS trial, participants will be randomly assigned to 4 groups receiving stimulation, including tonic, DTM, and FAST. Each stimulation will then be performed for 2 days, and a visual analog scale (VAS) for pain will be evaluated before and after each stimulation pattern. A stimulation-off period for 1 day is set between each stimulation pattern to wash out the residual previous stimulation effects. Pain improvement is defined as more than 33% reduction in the pain VAS. The primary analysis will compare pain improvement between the new stimulation patterns and the conventional tonic stimulation pattern in the SCS trial. The secondary outcomes will be evaluated as follows: (1) the relationships between causative disease and improvement rate by each stimulation pattern; (2) comparison of pain improvement between the DTM and FAST stimulation patterns in all cases and by causative disease; (3) changes in assessment items preoperatively to 24 months after the implantation; (4) preoperative factors associated with long-term effects defined as continuing for more than 12 months; and (5) adverse events related to this study 3 months after the implantation. DISCUSSION: This study aims to clarify the effectiveness of the latest new stimulation patterns compared to the conventional tonic stimulation. In addition, which stimulation pattern is most effective for which kind of causative disease will be clarified. TRIAL REGISTRATION: Japan Registry of Clinical Trials (jRCT) 1,042,220,094. Registered on 21 November 2022, and last modified on 6 January 2023. jRCT is an approved member of the Primary Registry Network of WHO ICTRP.


Asunto(s)
Neuralgia , Estimulación de la Médula Espinal , Humanos , Neuralgia/diagnóstico , Neuralgia/terapia , Implantación del Embrión , Japón , Niacinamida , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
J Neurosurg ; 138(2): 306-317, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901706

RESUMEN

OBJECTIVE: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy ameliorates symptoms in patients with essential tremor (ET). How this treatment affects canonical brain networks has not been elucidated. The purpose of this study was to clarify changes of brain networks after MRgFUS thalamotomy in ET patients by analyzing resting-state networks (RSNs). METHODS: Fifteen patients with ET were included in this study. Left MRgFUS thalamotomy was performed in all cases, and MR images, including resting-state functional MRI (rsfMRI), were taken before and after surgery. MR images of 15 age- and sex-matched healthy controls (HCs) were also used for analysis. Using rsfMRI data, canonical RSNs were extracted by performing dual regression analysis, and the functional connectivity (FC) within respective networks was compared among pre-MRgFUS patients, post-MRgFUS patients, and HCs. The severity of tremor was evaluated using the Clinical Rating Scale for Tremor (CRST) score pre- and postoperatively, and its correlation with RSNs was examined. RESULTS: Preoperatively, ET patients showed a significant decrease in FC in the sensorimotor network (SMN), primary visual network (VN), and visuospatial network (VSN) compared with HCs. The decrease in FC in the SMN correlated with the severity of tremor. After MRgFUS thalamotomy, ET patients still exhibited a significant decrease in FC in a small area of the SMN, but they exhibited an increase in the cerebellar network (CN). In comparison between pre- and post-MRgFUS patients, the FC in the SMN and the VSN significantly increased after treatment. Quantitative evaluation of the FCs in these three groups showed that the SMN and VSN increased postoperatively and demonstrated a trend toward those of HCs. CONCLUSIONS: The SMN and CN, which are considered to be associated with the cerebello-thalamo-cortical loop, exhibited increased connectivity after MRgFUS thalamotomy. In addition, the FC of the visual network, which declined in ET patients compared with HCs, tended to normalize postoperatively. This could be related to the hypothesis that visual feedback is involved in tremor severity in ET patients. Overall, the analysis of the RSNs by rsfMRI reflected the pathophysiology with the intervention of MRgFUS thalamotomy in ET patients and demonstrated a possibility of a biomarker for successful treatment.


Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Temblor , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
14.
Neurol Med Chir (Tokyo) ; 62(1): 45-55, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34759070

RESUMEN

Resting-state functional MRI (rs-fMRI) has been utilized to visualize large-scale brain networks. We evaluated the usefulness of multitier network analysis using rs-fMRI in patients with focal epilepsy. Structural and rs-fMRI data were retrospectively evaluated in 20 cases with medically refractory focal epilepsy, who subsequently underwent surgery. First, structural changes were examined using voxel-based morphometry analysis. Second, alterations in large-scale networks were evaluated using dual-regression analysis. Third, changes in cortical hubs were analyzed and the relationship between aberrant hubs and the epileptogenic zone (EZ) was evaluated. Finally, the relationship between the hubs and the default mode network (DMN) was examined using spectral dynamic causal modeling (spDCM). Dual-regression analysis revealed significant decrease in functional connectivity in several networks including DMN in patients, although no structural difference was seen between groups. Aberrant cortical hubs were observed in and around the EZ (EZ hubs) in 85% of the patients, and a strong degree of EZ hubs correlated to good seizure outcomes postoperatively. In spDCM analysis, facilitation was often seen from the EZ hub to the contralateral side, while inhibition was seen from the EZ hub to nodes of the DMN. Some cognition-related networks were impaired in patients with focal epilepsy. The EZ hub appeared in the vicinity of EZ facilitating connections to distant regions in the early phase, which may eventually generate secondary focus, while inhibiting connections to the DMN, which may cause cognitive deterioration. Our results demonstrate pathological network alterations in epilepsy and suggest that earlier surgical intervention may be more effective.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos
15.
J Neurosurg ; : 1-12, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35993838

RESUMEN

OBJECTIVE: The efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) ablation for essential tremor (ET) is well known; however, no prognostic factors have been established. The authors aimed to retrospectively investigate MRgFUS ablation outcomes and associated factors and to define the cutoff values for each prognostic factor. METHODS: Sixty-four Japanese patients who underwent unilateral ventral intermediate nucleus thalamotomy with MRgFUS for ET were included. Follow-up evaluations were performed at 1 week and 1, 3, 6, 12, and 24 months postoperatively. Tremor suppression was evaluated using the Clinical Rating Scale for Tremor (CRST), and adverse effects were recorded postoperatively. Outcome-associated factors were examined preoperatively, intraoperatively, and postoperatively using multivariate analyses. The cutoff values for the prognostic factors were calculated using receiver operating characteristics. RESULTS: Percentage improvements in the CRST scores of the affected upper limb were 82.4%, 72.2%, 68.6%, and 65.9% at 1, 3, 6, and 12 months, respectively. Preoperatively, a high skull density ratio (SDR) (p ≤ 0.047), low CRST part B score (used to assess tremors during several tasks) (cutoff value 25, p ≤ 0.041), and nonoccurrence of resting tremors (p = 0.027) were significantly associated with improved tremor control. An intraoperatively high maximum mean temperature (cutoff value 52.5°C, p ≤ 0.047), postoperatively large lesion (cutoff value 3.9 mm in the anterior-posterior direction, p ≤ 0.002; cutoff value 5.0-5.55 mm in the superior-inferior direction, p ≤ 0.026), and small transducer focus correction (p ≤ 0.015) were also associated with improved tremor control. No valid cutoff value was found for SDR. Adverse effects (limb weakness, sensory disturbance, ataxia/walking disturbance, dysgeusia, dysarthria, and facial swelling) occurred transiently and were associated with high SDR, high temperature, high number of sonication sessions, large lesion, and occurrence of resting tremor. Patients who developed leg weakness experienced greater percentage improvement in tremors at 3 months postoperatively than those who did not. CONCLUSIONS: MRgFUS ablation could be used to achieve good tremor control with acceptable adverse effects in Japanese patients with ET. The relatively low SDR in Asian ethnic groups as compared with that of Western populations makes treatment difficult; however, the cutoff values obtained in this study may be useful for achieving good treatment outcomes even in such patients. Clinical trial registration no.: UMIN000026952 (University Hospital Medical Information Network). ABBREVIATIONS: ACPC = anterior commissure-posterior commissure; AP = anterior to posterior; CRST = Clinical Rating Scale for Tremor; ET = essential tremor; MRgFUS = magnetic resonance-guided focused ultrasound; PC = posterior commissure; PSA = posterior subthalamic area; RL = right to left; ROC = receiver operating characteristic; SDR = skull density ratio; SI = superior to inferior; T2WI = T2-weighted imaging; VIM = ventral intermediate nucleus.

16.
Front Hum Neurosci ; 16: 1065459, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590066

RESUMEN

Holmes tremor is a symptomatic tremor that develops secondary to central nervous system disorders. Stereotactic neuromodulation is considered when the tremors are intractable. Targeting the ventral intermediate nucleus (Vim) is common; however, the outcome is often unsatisfactory, and the posterior subthalamic area (PSA) is expected as alternative target. In this study, we report the case of a patient with intractable Holmes tremor who underwent dual-lead deep brain stimulation (DBS) to stimulate multiple locations in the PSA and thalamus. The patient was a 77-year-old female who complained of severe tremor in her left upper extremity that developed one year after her right thalamic infarction. Vim-thalamotomy using focused ultrasound therapy (FUS) was initially performed but failed to control tremor. Subsequently, we performed DBS using two leads to stimulate four different structures. Accordingly, one lead was implanted with the aim of targeting the ventral oralis nucleus (Vo)/zona incerta (Zi), and the other with the aim of targeting the Vim/prelemniscal radiation (Raprl). Electrode stimulation revealed that Raprl and Zi had obvious effects. Postoperatively, the patient achieved good tremor control without any side effects, which was maintained for two years. Considering that she demonstrated resting, postural, and intention/action tremor, and Vim-thalamotomy by FUS was insufficient for tremor control, complicated pathogenesis was presumed in her symptoms including both the cerebellothalamic and the pallidothalamic pathways. Using the dual-lead DBS technique, we have more choices to adjust the stimulation at multiple sites, where different functional networks are connected. Intractable tremors, such as Holmes tremor, may have complicated pathology, therefore, modulating multiple pathological networks is necessary. We suggest that the dual-lead DBS (Vo/Raprl and Vim/Zi) presented here is safe, technically feasible, and possibly effective for the control of Holmes tremor.

17.
Neurol Med Chir (Tokyo) ; 61(11): 629-639, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34470990

RESUMEN

Magnetic resonance (MR)-guided focused ultrasound surgery (MRgFUS) is the latest minimally invasive stereotactic procedure, and thalamotomy using this novel modality has demonstrated its effectiveness and safety, especially for patients with essential tremor (ET) and Parkinson's disease (PD). In Japan, the application of MRgFUS to treat ET and PD has recently been covered by health insurance. Technically, the transducer with 1024 elements emits ultrasound beams, which are then focused on the target with a phase control, resulting in optimal ablation by thermal coagulation. The technical advantages of MRgFUS are continuous intraoperative monitoring of clinical symptoms and MR images and fine adjustment of the target by the steering function. Postoperative tremor control is compatible with other modalities, although long-term follow-up is necessary. The adverse effects are usually transient and acceptable. Prognostic factors for good tremor control include high temperature and large lesion size. A high skull density ratio is a factor to achieve high temperature and large lesioning, but it may not be necessary and sufficient for clinical outcomes. For patients with advanced symptoms such as bilateral tremor or head/neck tremor, deep brain stimulation may be recommended because of the adjustability of stimulation and the possibility of bilateral treatment. Patients have high expectations of MRgFUS because of its non-invasiveness. To perform this treatment safely and effectively, physicians need to understand the technological aspects, the physiological principles. To choose the appropriate modality, physicians also should recognize the clinical advantages and disadvantages of MRgFUS compared to other modalities.


Asunto(s)
Temblor Esencial , Temblor , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Resultado del Tratamiento , Temblor/terapia
18.
Sci Rep ; 10(1): 5263, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210314

RESUMEN

Deep-seated epileptic focus estimation using magnetoencephalography is challenging because of its low signal-to-noise ratio and the ambiguity of current sources estimated by interictal epileptiform discharge (IED). We developed a distributed source (DS) analysis method using a volume head model as the source space of the forward model and standardized low-resolution brain electromagnetic tomography combined with statistical methods (permutation tests between IEDs and baselines and false discovery rate between voxels to reduce variation). We aimed to evaluate the efficacy of the combined DS (cDS) analysis in surgical cases. In total, 19 surgical cases with adult and pediatric focal epilepsy were evaluated. Both cDS and equivalent current dipole (ECD) analyses were performed in all cases. The concordance rates of the two methods with surgically identified epileptic foci were calculated and compared with surgical outcomes. Concordance rates from the cDS analysis were significantly higher than those from the ECD analysis (68.4% vs. 26.3%), especially in cases with deep-seated lesions, such as in the interhemispheric, fronto-temporal base, and mesial temporal structures (81.8% vs. 9.1%). Furthermore, the concordance rate correlated well with surgical outcomes. In conclusion, cDS analysis has better diagnostic performance in focal epilepsy, especially with deep-seated epileptic focus, and potentially leads to good surgical outcomes.


Asunto(s)
Epilepsia Refractaria/diagnóstico por imagen , Epilepsias Parciales/diagnóstico por imagen , Cabeza , Magnetoencefalografía/métodos , Neuroimagen/métodos , Fantasmas de Imagen , Cuidados Preoperatorios/métodos , Adolescente , Adulto , Niño , Epilepsia Refractaria/cirugía , Electroencefalografía , Epilepsias Parciales/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
19.
Epilepsy Behav Case Rep ; 11: 10-13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30591881

RESUMEN

•A drug-resistant epilepsy case showed hypermotor seizures and amygdala enlargement.•Seizure onset zone was the hippocampus, not amygdala, as revealed by SEEG.•The enlarged amygdala pathology was classified as FCD type I.•Selective amygdalohippocampectomy led to good outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA