Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929905

RESUMEN

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Asunto(s)
Ecdisterona/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/parasitología , Animales , Anopheles/parasitología , Culicidae , Ecdisterona/fisiología , Femenino , Células HEK293 , Humanos , Insectos Vectores , Malaria/parasitología , Ratones , Mosquitos Vectores , Células 3T3 NIH , Oogénesis/fisiología , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
2.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285728

RESUMEN

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Asunto(s)
Aedes , Anopheles , Malaria , Femenino , Animales , Anopheles/genética , Mosquitos Vectores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas del Huevo/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fertilidad/genética , Lípidos , Aedes/genética , Aedes/metabolismo
3.
Nature ; 567(7747): 239-243, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814727

RESUMEN

Bites of Anopheles mosquitoes transmit Plasmodium falciparum parasites that cause malaria, which kills hundreds of thousands of people every year. Since the turn of this century, efforts to prevent the transmission of these parasites via the mass distribution of insecticide-treated bed nets have been extremely successful, and have led to an unprecedented reduction in deaths from malaria1. However, resistance to insecticides has become widespread in Anopheles populations2-4, which has led to the threat of a global resurgence of malaria and makes the generation of effective tools for controlling this disease an urgent public health priority. Here we show that the development of P. falciparum can be rapidly and completely blocked when female Anopheles gambiae mosquitoes take up low concentrations of specific antimalarials from treated surfaces-conditions that simulate contact with a bed net. Mosquito exposure to atovaquone before, or shortly after, P. falciparum infection causes full parasite arrest in the midgut, and prevents transmission of infection. Similar transmission-blocking effects are achieved using other cytochrome b inhibitors, which demonstrates that parasite mitochondrial function is a suitable target for killing parasites. Incorporating these effects into a model of malaria transmission dynamics predicts that impregnating mosquito nets with Plasmodium inhibitors would substantially mitigate the global health effects of insecticide resistance. This study identifies a powerful strategy for blocking Plasmodium transmission by female Anopheles mosquitoes, which has promising implications for efforts to eradicate malaria.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/parasitología , Antimaláricos/farmacología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Plasmodium falciparum , África/epidemiología , Animales , Anopheles/crecimiento & desarrollo , Antimaláricos/administración & dosificación , Atovacuona/administración & dosificación , Atovacuona/farmacología , Citocromos b/antagonistas & inhibidores , Femenino , Mosquiteros Tratados con Insecticida , Malaria Falciparum/epidemiología , Modelos Biológicos , Mosquitos Vectores/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Factores de Tiempo
4.
PLoS Pathog ; 16(12): e1009131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382824

RESUMEN

Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.


Asunto(s)
Malaria Falciparum/transmisión , Mosquitos Vectores/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Animales , Anopheles/parasitología , Conducta Alimentaria , Femenino , Periodo de Incubación de Enfermedades Infecciosas
5.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
6.
Bioorg Med Chem Lett ; 24(17): 4151-7, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25103602

RESUMEN

The malaria parasite Plasmodium goes through two life stages in the human host, a non-symptomatic liver stage (LS) followed by a blood stage with all clinical manifestation of the disease. In this study, we investigated a series of 2-alkynoic fatty acids (2-AFAs) with chain lengths between 14 and 18 carbon atoms for dual in vitro activity against both life stages. 2-Octadecynoic acid (2-ODA) was identified as the best inhibitor of Plasmodium berghei parasites with ten times higher potency (IC50=0.34 µg/ml) than the control drug. In target determination studies, the same compound inhibited three Plasmodium falciparum FAS-II (PfFAS-II) elongation enzymes PfFabI, PfFabZ, and PfFabG with the lowest IC50 values (0.28-0.80 µg/ml, respectively). Molecular modeling studies provided insights into the molecular aspects underlying the inhibitory activity of this series of 2-AFAs and a likely explanation for the considerably different inhibition potentials. Blood stages of P. falciparum followed a similar trend where 2-ODA emerged as the most active compound, with 20 times less potency. The general toxicity and hepatotoxicity of 2-AFAs were evaluated by in vitro and in vivo methods in mammalian cell lines and zebrafish models, respectively. This study identifies 2-ODA as the most promising antiparasitic 2-AFA, particularly towards P. berghei parasites.


Asunto(s)
Antimaláricos/farmacología , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Ácidos Grasos Insaturados/farmacología , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos Insaturados/síntesis química , Ácidos Grasos Insaturados/química , Humanos , Modelos Moleculares , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Pez Cebra
7.
PLoS Negl Trop Dis ; 18(1): e0011890, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206958

RESUMEN

Anopheles gambiae and its sibling species Anopheles coluzzii are the most efficient vectors of the malaria parasite Plasmodium falciparum. When females of these species feed on an infected human host, oogenesis and parasite development proceed concurrently, but interactions between these processes are not fully understood. Using multiple natural P. falciparum isolates from Burkina Faso, we show that in both vectors, impairing steroid hormone signaling to disrupt oogenesis leads to accelerated oocyst growth and in a manner that appears to depend on both parasite and mosquito genotype. Consistently, we find that egg numbers are negatively linked to oocyst size, a metric for the rate of oocyst development. Oocyst growth rates are also strongly accelerated in females that are in a pre-gravid state, i.e. that fail to develop eggs after an initial blood meal. Overall, these findings advance our understanding of mosquito-parasite interactions that influence P. falciparum development in malaria-endemic regions.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Femenino , Humanos , Plasmodium falciparum , Anopheles/parasitología , Mosquitos Vectores , Interacciones Huésped-Parásitos , Malaria Falciparum/parasitología , Malaria/parasitología , Oocistos
8.
Mar Drugs ; 11(10): 4019-34, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24152562

RESUMEN

Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS) and liver stage (LS) Plasmodium parasites. The majority (14) of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC(50)s around 3 µg/mL). The extracts generally had high selectivity indices (>10). Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7) cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 µg/mL). The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II) pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds.


Asunto(s)
Antimaláricos/farmacología , Hígado/efectos de los fármacos , Phaeophyceae/química , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Algas Marinas/química , Antimaláricos/química , Carcinoma Hepatocelular/parasitología , Línea Celular Tumoral , Humanos , Hígado/parasitología
9.
bioRxiv ; 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37398018

RESUMEN

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp silencing triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely infertile, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.

10.
PLOS Glob Public Health ; 2(5): e0000210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962174

RESUMEN

Despite considerable success in controlling malaria worldwide, progress toward achieving malaria elimination has largely stalled. In particular, strategies to overcome roadblocks in malaria control and elimination in Africa are critical to achieving worldwide malaria elimination goals-this continent carries 94% of the global malaria case burden. To identify key areas for targeted efforts, we combined a comprehensive review of current literature with direct feedback gathered from frontline malaria workers, leaders, and scholars from Africa. Our analysis identified deficiencies in human resources, training, and capacity building at all levels, from research and development to community involvement. Addressing these needs will require active and coordinated engagement of stakeholders as well as implementation of effective strategies, with malaria-endemic countries owning the relevant processes. This paper reports those valuable identified needs and their concomitant opportunities to accelerate progress toward the goals of the World Health Organization's Global Technical Strategy for Malaria 2016-2030. Ultimately, we underscore the critical need to re-think current approaches and expand concerted efforts toward increasing relevant human resources for health and capacity building at all levels if we are to develop the relevant competencies necessary to maintain current gains while accelerating momentum toward malaria control and elimination.

11.
PLOS Glob Public Health ; 2(6): e0000262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962314

RESUMEN

After a longstanding global presence, malaria is now largely non-existent or suppressed in most parts of the world. Today, cases and deaths are primarily concentrated in sub-Saharan Africa. According to many experts, this persistence on the African continent reflects factors such as resistance to insecticides and drugs as well as insufficient access to essential commodities such as insecticide-treated nets and effective drugs. Crucially, however, this narrative ignores many central weaknesses in the fight against malaria and instead reinforces a narrow, commodity-driven vision of disease control. This paper therefore describes the core challenges hindering malaria programs in Africa and highlights key opportunities to rethink current strategies for sustainable control and elimination. The epidemiology of malaria in Africa presents far greater challenges than elsewhere and requires context-specific initiatives tailored to national and sub-national targets. To sustain progress, African countries must systematically address key weaknesses in its health systems, improve the quality and use of data for surveillance-responses, improve both technical and leadership competencies for malaria control, and gradually reduce overreliance on commodities while expanding multisectoral initiatives such as improved housing and environmental sanitation. They must also leverage increased funding from both domestic and international sources, and support pivotal research and development efforts locally. Effective vaccines and drugs, or other potentially transformative technologies such as genedrive modified mosquitoes, could further accelerate malaria control by complementing current tools. However, our underlying strategies remain insufficient and must be expanded to include more holistic and context-specific approaches critical to achieve and sustain effective malaria control.

12.
Nat Microbiol ; 6(12): 1575-1582, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819638

RESUMEN

Wolbachia, a maternally inherited intracellular bacterial species, can manipulate host insect reproduction by cytoplasmic incompatibility (CI), which results in embryo lethality in crosses between infected males and uninfected females. CI is encoded by two prophage genes, cifA and cifB. Wolbachia, coupled with the sterile insect technique, has been used in field trials to control populations of the dengue vector Aedes albopictus, but CI-inducing strains are not known to infect the malaria vector Anopheles gambiae. Here we show that cifA and cifB can induce conditional sterility in the malaria vector An. gambiae. We used transgenic expression of these Wolbachia-derived genes in the An. gambiae germline to show that cifB is sufficient to cause embryonic lethality and that cifB-induced sterility is rescued by cifA expression in females. When we co-expressed cifA and cifB in male mosquitoes, the CI phenotype was attenuated. In female mosquitoes, cifB impaired fertility, which was overcome by co-expression of cifA. Our findings pave the way towards using CI to control malaria mosquito vectors.


Asunto(s)
Anopheles/microbiología , Anopheles/fisiología , Proteínas Bacterianas/metabolismo , Herencia Extracromosómica , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Wolbachia/metabolismo , Aedes/genética , Aedes/microbiología , Aedes/fisiología , Animales , Anopheles/genética , Proteínas Bacterianas/genética , Femenino , Infertilidad Masculina , Malaria/transmisión , Masculino , Mosquitos Vectores/genética , Wolbachia/genética
13.
Commun Biol ; 4(1): 911, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312484

RESUMEN

Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where traits underlying male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be determinants of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results suggest that CHC abundance may be subject to sexual selection in addition to selection by insecticide pressure. This has implications for insecticide resistance management, as these traits may be sustained in the population due to their benefits in mating even in the absence of insecticides.


Asunto(s)
Anopheles/fisiología , Hidrocarburos/farmacología , Resistencia a los Insecticidas , Mosquitos Vectores/fisiología , Feromonas/farmacología , Conducta Sexual Animal , Animales , Anopheles/efectos de los fármacos , Burkina Faso , Epidermis/química , Insecticidas/efectos adversos , Malaria , Mosquitos Vectores/efectos de los fármacos , Piretrinas/efectos adversos , Reproducción
15.
Cell Host Microbe ; 16(6): 778-86, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25498345

RESUMEN

During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection.


Asunto(s)
Hígado/parasitología , Malaria/metabolismo , Fosfatidilcolinas/biosíntesis , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Animales , Línea Celular , Supervivencia Celular , Femenino , Interacciones Huésped-Parásitos , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo
16.
PLoS One ; 7(1): e29408, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22238609

RESUMEN

Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.


Asunto(s)
Actinas/metabolismo , Hepatocitos/parasitología , Plasmodium/metabolismo , Multimerización de Proteína/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Gelsolina/metabolismo , Gelsolina/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hepatocitos/metabolismo , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/fisiología , Humanos , Cinética , Hígado/metabolismo , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente , Plasmodium/genética , Plasmodium/fisiología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA