Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 111(6): 1768-1779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35883194

RESUMEN

In tobacco, the homologous ETHYLENE RESPONSE FACTOR (ERF) transcription factors ERF199 and ERF189 coordinate the transcription of multiple metabolic genes involved in nicotine biosynthesis. Natural alleles at the NIC1 and NIC2 loci greatly affect alkaloid accumulation and overlap with ERF199 and ERF189 in the tobacco genome, respectively. In this study, we identified several low-nicotine tobacco varieties lacking ERF199 or ERF189 from a tobacco germplasm collection. We characterized the sequence of these new nic1 and nic2 alleles, as well as the previously defined alleles nic1-1 and nic2-1. Moreover, we examined the influence of different nic alleles on alkaloid contents and expression levels of genes related to nicotine biosynthesis. We also demonstrated that the deletion of a distal genomic region attenuates ERF199 expression, resulting in a moderately negative effect on the alkaloid phenotype. Our study provides new insights into the regulation of nicotine biosynthesis and novel genetic resources to breed low-nicotine tobacco.


Asunto(s)
Nicotiana , Nicotina , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes Reguladores , Nicotina/genética , Nicotina/metabolismo , Oxilipinas/metabolismo , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
BMC Genomics ; 24(1): 516, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667170

RESUMEN

BACKGROUND: Anatabine, although being one of four major tobacco alkaloids, is never accumulated in high quantity in any of the naturally occurring species from the Nicotiana genus. Previous studies therefore focused on transgenic approaches to synthetize anatabine, most notably by generating transgenic lines with suppressed putrescine methyltransferase (PMT) activity. This led to promising results, but the global gene expression of plants with such distinct metabolism has not been analyzed. In the current study, we describe how these plants respond to topping and the downstream effects on alkaloid biosynthesis. RESULTS: The surge in anatabine accumulation in PMT transgenic lines after topping treatment and its effects on gene expression changes were analyzed. The results revealed increases in expression of isoflavone reductase-like (A622) and berberine bridge-like enzymes (BBLs) oxidoreductase genes, previously shown to be crucial for the final steps of nicotine biosynthesis. We also observed significantly higher methylputrescine oxidase (MPO) expression in all plants subjected to topping treatment. In order to investigate if MPO suppression would have the same effects as that of PMT, we generated transgenic plants. These plants with suppressed MPO expression showed an almost complete drop in leaf nicotine content, whereas leaf anatabine was observed to increase by a factor of ~ 1.6X. CONCLUSION: Our results are the first concrete evidence that suppression of MPO leads to decreased nicotine in favor of anatabine in tobacco roots and that this anatabine is successfully transported to tobacco leaves. Alkaloid transport in plants remains to be investigated to higher detail due to high variation of its efficiency among Nicotiana species and varieties of tobacco. Our research adds important step to better understand pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine.


Asunto(s)
Alcaloides , Nicotiana , Nicotiana/genética , Nicotina , Hojas de la Planta/genética , Pirrolidinas , Expresión Génica
3.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32662816

RESUMEN

Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.


Asunto(s)
Colesterol/metabolismo , Bases de Datos Factuales , Redes y Vías Metabólicas , Nicotiana , Nicotiana/clasificación , Nicotiana/metabolismo
4.
J Exp Bot ; 74(15): 4540-4558, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37155956

RESUMEN

Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.


Asunto(s)
Chlorella vulgaris , Chlorophyta , Luz , Chlorella vulgaris/metabolismo , Proteómica , Fotosíntesis , Aclimatación , Plantas
5.
Chem Res Toxicol ; 36(4): 714-723, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976926

RESUMEN

Tobacco smoke delivers a complex mixture of hazardous and potentially hazardous chemicals. Some of these may induce the formation of DNA mutations, which increases the risk of various cancers that display characteristic patterns of accumulated mutations arising from the causative exposures. Tracking the contributions of individual mutagens to mutational signatures present in human cancers can help understand cancer etiology and advance disease prevention strategies. To characterize the potential contributions of individual constituents of tobacco smoke to tobacco exposure-associated mutational signatures, we first assessed the toxic potential of 13 tobacco-relevant compounds by determining their impact on the viability of a human bronchial lung epithelial cell line (BEAS-2B). Experimentally derived high-resolution mutational profiles were characterized for the seven most potent compounds by sequencing the genomes of clonally expanded mutants that arose after exposure to the individual chemicals. Analogous to the classification of mutagenic processes on the basis of signatures from human cancers, we extracted mutational signatures from the mutant clones. We confirmed the formation of previously characterized benzo[a]pyrene mutational signatures. Furthermore, we discovered three novel mutational signatures. The mutational signatures arising from benzo[a]pyrene and norharmane were similar to human lung cancer signatures attributed to tobacco smoking. However, the signatures arising from N-methyl-N'-nitro-N-nitrosoguanidine and 4-(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone were not directly related to known tobacco-linked mutational signatures from human cancers. This new data set expands the scope of the in vitro mutational signature catalog and advances understanding of how environmental agents mutate DNA.


Asunto(s)
Fumar Cigarrillos , Neoplasias Pulmonares , Contaminación por Humo de Tabaco , Humanos , Benzo(a)pireno , Mutación , Neoplasias Pulmonares/genética , ADN
6.
Toxicol Mech Methods ; 33(5): 401-410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36482696

RESUMEN

Background: Clozapine is an atypical antipsychotic drug used to treat treatment-resistant schizophrenia. Its side effects, including liver enzyme abnormalities, experienced by many patients preclude its more common use as a first-line therapy for schizophrenia. Toxicoproteomic approaches have been demonstrated to effectively guide the identification of toxicological mechanisms.Methods: To further our understanding of the molecular effects of clozapine, we performed a data-independent acquisition (DIA)-based quantitative proteomics investigation of clozapine-treated human liver spheroid cultures.Results: In total, we quantified 4479 proteins across the five treatment groups (vehicle; 15 µM, 30 µM, and 60 µM clozapine; and 10 ng/mL TNFα + IL-1ß). Clozapine (60 µM) treatment yielded 36 differentially expressed proteins (FDR < 0.05). Gene-set enrichment analysis indicated perturbation of several gene sets, including interferon gamma signaling (e.g. interferon gamma receptor 1) and prominent autophagy-related processes (e.g. upregulation of sequestosome-1 (SQSTM1), MAP1LC3B/LC3B2, GABARAPL2, and nuclear receptor coactivator 4). The effects of clozapine on autophagy were confirmed by targeted mass spectrometry and western blotting using conventional SQSTM1 and LC3B markers.Conclusions: Combined with prior literature, our work suggests a broad contribution of autophagy to both the therapeutic and side effects of clozapine. Overall, this study demonstrates how proteomics can contribute to the elucidation of physiological and toxicological mechanisms of drugs.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/toxicidad , Clozapina/uso terapéutico , Proteína Sequestosoma-1 , Antipsicóticos/toxicidad , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Esquizofrenia/inducido químicamente , Hígado
7.
BMC Genomics ; 23(1): 624, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042406

RESUMEN

BACKGROUND: Selection of optimal computational strategies for analyzing metagenomics data is a decisive step in determining the microbial composition of a sample, and this procedure is complex because of the numerous tools currently available. The aim of this research was to summarize the results of crowdsourced sbv IMPROVER Microbiomics Challenge designed to evaluate the performance of off-the-shelf metagenomics software as well as to investigate the robustness of these results by the extended post-challenge analysis. In total 21 off-the-shelf taxonomic metagenome profiling pipelines were benchmarked for their capacity to identify the microbiome composition at various taxon levels across 104 shotgun metagenomics datasets of bacterial genomes (representative of various microbiome samples) from public databases. Performance was determined by comparing predicted taxonomy profiles with the gold standard. RESULTS: Most taxonomic profilers performed homogeneously well at the phylum level but generated intermediate and heterogeneous scores at the genus and species levels, respectively. kmer-based pipelines using Kraken with and without Bracken or using CLARK-S performed best overall, but they exhibited lower precision than the two marker-gene-based methods MetaPhlAn and mOTU. Filtering out the 1% least abundance species-which were not reliably predicted-helped increase the performance of most profilers by increasing precision but at the cost of recall. However, the use of adaptive filtering thresholds determined from the sample's Shannon index increased the performance of most kmer-based profilers while mitigating the tradeoff between precision and recall. CONCLUSIONS: kmer-based metagenomic pipelines using Kraken/Bracken or CLARK-S performed most robustly across a large variety of microbiome datasets. Removing non-reliably predicted low-abundance species by using diversity-dependent adaptive filtering thresholds further enhanced the performance of these tools. This work demonstrates the applicability of computational pipelines for accurately determining taxonomic profiles in clinical and environmental contexts and exemplifies the power of crowdsourcing for unbiased evaluation.


Asunto(s)
Colaboración de las Masas , Metagenoma , Benchmarking , Metagenómica/métodos , Programas Informáticos
8.
Nucleic Acids Res ; 48(10): 5397-5406, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32338761

RESUMEN

BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction-modification systems, is also active against BREX. In contrast to the wild-type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R-M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.


Asunto(s)
Bacteriófago T7/fisiología , Proteínas Virales/metabolismo , Bacteriófago T7/genética , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/virología , Plásmidos , Proteínas Virales/genética
9.
Molecules ; 27(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432206

RESUMEN

There is an increasingly urgent call to shift industrial processes from fossil fuel feedstock to sustainable bio-based resources. This change becomes of high importance considering new budget requirements for a carbon-neutral economy. Such a transformation can be driven by traditionally used plants that are able to produce large amounts of valuable biologically relevant secondary metabolites. Tobacco plants can play a leading role in providing value-added products in remote areas of the world. In this study, we propose a non-exhaustive list of compounds with potential economic interest that can be sourced from the tobacco plant. In order to optimize extraction methodologies, we first analyzed their physico-chemical properties using rapid solubility tests and high-resolution microfractionation techniques. Next, to identify an optimal extraction for a selected list of compounds, we compared 13 different extraction method-solvent combinations. We proceeded with profiling some of these compounds in a total of six varieties from Nicotiana tabacum and Nicotiana rustica species, identifying the optimal variety for each. The estimated expected yields for each of these compounds demonstrate that tobacco plants can be a superior source of valuable compounds with diverse applications beyond nicotine. Among the most interesting results, we found high variability of anatabine content between species and varieties, ranging from 287 to 1699 µg/g. In addition, we found that CGA (1305 µg/g) and rutin (7910 µg/g) content are orders of magnitude lower in the Burley variety as compared to all others.


Asunto(s)
Fraccionamiento Químico , Nicotiana , Nicotiana/química , Nicotina/metabolismo
10.
Plant J ; 101(6): 1303-1317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659801

RESUMEN

Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN-like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN-like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE-2-6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw-D plants. Co-expression of green fluorescent protein (GFP)-tagged TCPs with native or red fluorescent protein (RFP)-tagged TE-6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double-hybrid experiments confirmed 6B/TCP binding and showed that TE-1-6B-L and TE-1-6B-R bind a smaller set of TCP proteins than TE-2-6B. A single nucleotide mutation in TE-1-6B-R enlarged its TCP-binding repertoire to that of TE-2-6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE-2-6B targets the TCP4 DNA-binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE-encoded 6b genes.


Asunto(s)
Agrobacterium/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Arabidopsis/microbiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Microscopía Confocal , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
11.
Arch Toxicol ; 95(10): 3341-3359, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313809

RESUMEN

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.


Asunto(s)
Envejecimiento Prematuro/etiología , Miocitos del Músculo Liso/efectos de los fármacos , Nicotiana/efectos adversos , Humo/efectos adversos , Aerosoles , Aorta/citología , Aorta/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular , Daño del ADN/efectos de los fármacos , Humanos , Inflamación/etiología , Miocitos del Músculo Liso/patología , Fumar/efectos adversos , Productos de Tabaco
12.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33963423

RESUMEN

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotiana/toxicidad , Humo , Aerosoles , Animales , Apolipoproteínas E/metabolismo , Femenino , Exposición por Inhalación , Pulmón , Ratones , Nicotina , Pruebas de Función Respiratoria , Fumar , Productos de Tabaco , Transcriptoma
13.
Nucleic Acids Res ; 47(1): 253-265, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30418590

RESUMEN

Prokaryotes evolved numerous systems that defend against predation by bacteriophages. In addition to well-known restriction-modification and CRISPR-Cas immunity systems, many poorly characterized systems exist. One class of such systems, named BREX, consists of a putative phosphatase, a methyltransferase and four other proteins. A Bacillus cereus BREX system provides resistance to several unrelated phages and leads to modification of specific motif in host DNA. Here, we study the action of BREX system from a natural Escherichia coli isolate. We show that while it makes cells resistant to phage λ infection, induction of λ prophage from cells carrying BREX leads to production of viruses that overcome the defense. The induced phage DNA contains a methylated adenine residue in a specific motif. The same modification is found in the genome of BREX-carrying cells. The results establish, for the first time, that immunity to BREX system defense is provided by an epigenetic modification.


Asunto(s)
Bacteriófago lambda/genética , Metilación de ADN/genética , Escherichia coli/genética , Motivos de Nucleótidos/genética , Adenina/metabolismo , Bacillus cereus/genética , Sistemas CRISPR-Cas/genética , Metiltransferasas/genética , Monoéster Fosfórico Hidrolasas/genética
14.
J Appl Toxicol ; 41(10): 1598-1619, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33825214

RESUMEN

Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.


Asunto(s)
Absorción Fisiológica , Apolipoproteínas/efectos de los fármacos , Apolipoproteínas/metabolismo , Enfermedades Cardiovasculares/inducido químicamente , Fumar Cigarrillos/efectos adversos , Exposición por Inhalación , Enfermedades Pulmonares/inducido químicamente , Humo/efectos adversos , Animales , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Enfermedades Pulmonares/fisiopatología , Masculino , Ratones
15.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31975625

RESUMEN

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Asunto(s)
Aerosoles/toxicidad , Aterosclerosis/etiología , Enfermedades Cardiovasculares/etiología , Cigarrillo Electrónico a Vapor/toxicidad , Corazón/efectos de los fármacos , Humo/efectos adversos , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Progresión de la Enfermedad , Femenino , Exposición por Inhalación , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos
16.
Bioinformatics ; 35(20): 4190-4192, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30873538

RESUMEN

SUMMARY: GladiaTOX R package is an open-source, flexible solution to high-content screening data processing and reporting in biomedical research. GladiaTOX takes advantage of the 'tcpl' core functionalities and provides a number of extensions: it provides a web-service solution to fetch raw data; it computes severity scores and exports ToxPi formatted files; furthermore it contains a suite of functionalities to generate PDF reports for quality control and data processing. AVAILABILITY AND IMPLEMENTATION: GladiaTOX R package (bioconductor). Also available via: git clone https://github.com/philipmorrisintl/GladiaTOX.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Investigación Biomédica , Programas Informáticos , Control de Calidad , Toxicología
17.
Arch Toxicol ; 94(6): 2179-2206, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367274

RESUMEN

The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.


Asunto(s)
Cigarrillo Electrónico a Vapor/toxicidad , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/toxicidad , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Vapeo/efectos adversos , Animales , Biomarcadores/sangre , Seguridad de Productos para el Consumidor , Femenino , Exposición por Inhalación , Hígado/metabolismo , Hígado/patología , Masculino , Ratas Sprague-Dawley , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Medición de Riesgo , Factores de Tiempo , Pruebas de Toxicidad
18.
Plant J ; 94(2): 274-287, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29396989

RESUMEN

Nicotiana otophora contains Agrobacterium-derived T-DNA sequences introduced by horizontal gene transfer (Chen et al., 2014). Sixty-nine contigs were assembled into four different cellular T-DNAs (cT-DNAs) totalling 83 kb. TC and TE result from two successive transformation events, each followed by duplication, yielding two TC and two TE inserts. TC is also found in other Nicotiana species, whereas TE is unique to N. otophora. Both cT-DNA regions are partially duplicated inverted repeats. Analysis of the cT-DNA divergence patterns allowed reconstruction of the evolution of the TC and TE regions. TC and TE carry 10 intact open reading frames. Three of these are TE-6b genes, derived from a single 6b gene carried by the Agrobacterium strain which inserted TE in the N. otophora ancestor. 6b genes have so far only been found in Agrobacterium tumefaciens or Agrobacterium vitis T-DNAs and strongly modify plant growth (Chen and Otten, 2016). The TE-6b genes were expressed in Nicotiana tabacum under the constitutive 2 × 35S promoter. TE-1-6b-R and TE-2-6b led to shorter plants, dark-green leaves, a strong increase in leaf vein development and modified petiole wings. TE-1-6b-L expression led to a similar phenotype, but in addition leaves show outgrowths at the margins, flowers were modified and plants became viviparous, i.e. embryos germinated in the capsules at an early stage of their development. Embryos could be rescued by culture in vitro. The TE-6b phenotypes are very different from the earlier described 6b phenotypes and could provide new insight into the mode of action of the 6b genes.


Asunto(s)
ADN Bacteriano/genética , Genes de Plantas/genética , Nicotiana/genética , Agrobacterium/genética , Mapeo Cromosómico , ADN de Plantas/genética , Evolución Molecular , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Semillas/crecimiento & desarrollo , Nicotiana/anatomía & histología , Nicotiana/crecimiento & desarrollo
19.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494692

RESUMEN

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Asunto(s)
Aerosoles/toxicidad , Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Productos de Tabaco/toxicidad , Adenilato Quinasa/metabolismo , Bronquios/metabolismo , Bronquios/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Proteoma/metabolismo , Pruebas de Toxicidad , Transcriptoma/efectos de los fármacos
20.
Plant Physiol ; 174(2): 999-1011, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28584068

RESUMEN

In tobacco (Nicotiana tabacum), nicotine is the predominant alkaloid. It is produced in the roots and accumulated mainly in the leaves. Jasmonates play a central signaling role in damage-induced nicotine formation. The genome sequence of tobacco provides us an almost complete inventory of structural and regulatory genes involved in nicotine pathway. Phylogenetic and expression analyses revealed a series of structural genes of the nicotine pathway, forming a regulon, under the control of jasmonate-responsive ETHYLENE RESPONSE FACTOR (ERF) transcription factors. The duplication of NAD and polyamine metabolic pathways and the subsequent recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon were suggested to be the drivers for pyridine and pyrrolidine ring formation steps early in the pathway. Transcriptional regulation by ERF and cooperatively acting MYC2 transcription factors are corroborated by the frequent occurrence of cognate cis-regulatory elements of the factors in the promoter regions of the downstream structural genes. The allotetraploid tobacco has homologous clusters of ERF genes on different chromosomes, which are possibly derived from two ancestral diploids and include either nicotine-controlling ERF189 or ERF199 A large chromosomal deletion was found within one allele of the nicotine-controlling NICOTINE2 locus, which is part of one of the ERF gene clusters, and which has been used to breed tobacco cultivars with a low-nicotine content.


Asunto(s)
Vías Biosintéticas/genética , Evolución Molecular , Genoma de Planta , Nicotiana/genética , Nicotina/biosíntesis , Secuencia de Bases , Vías Biosintéticas/efectos de los fármacos , Cromosomas de las Plantas/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Glucuronidasa/metabolismo , Familia de Multigenes , Mutación/genética , NAD/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Regiones Promotoras Genéticas , Eliminación de Secuencia/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA