Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Biophys Res Commun ; 585: 191-195, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34813979

RESUMEN

Impairment of pancreatic ß cells is a principal driver of the development of diabetes. Restoring normal insulin release from the ß cells depends on the ATP produced by the intracellular mitochondria. In maintaining mitochondrial function, the tumor suppressor p53 has emerged as a novel regulator of metabolic homeostasis and participates in adaptations to nutritional changes. In this study, we used orotic acid, an intermediate in the pathway for de novo synthesis of the pyrimidine nucleotide, to reduce genotoxicity. Administration of orotic acid reduced p53 activation of MIN6 ß cells and subsequently reduced ß cell death in the db/db mouse. Orotic acid intake helped to maintain the islet size, number of ß cells, and protected insulin secretion in the db/db mouse. In conclusion, orotic acid treatment maintained ß cell function and reduced cell death, and may therefore, be a future therapeutic strategy for the prevention and treatment of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Células Secretoras de Insulina/efectos de los fármacos , Ácido Orótico/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Citosol/efectos de los fármacos , Citosol/metabolismo , Diabetes Mellitus Tipo 2/sangre , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ácido Orótico/administración & dosificación , Ácido Orótico/sangre , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología
2.
Am J Physiol Heart Circ Physiol ; 319(5): H1087-H1096, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946259

RESUMEN

Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, Fushimura Y, Hato D, Iwai-Kanai E, Matoba S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol 319: H1087-H1096, 2020. First published September 18, 2020; doi:10.1152/ajpheart.00314.2020.-Pulmonary arterial hypertension (PAH) is a refractory disease. Its prognosis remains poor; hence, establishment of novel therapeutic targets is urgent. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). Recently, p53 was shown to suppress PAH progression. Because inhibition of autophagy and ROS is known to improve PAH, we examined the effect of TIGAR on PAH progression. We compared pulmonary hypertension (PH) development between TIGAR-deficient knockout (KO) and wild-type (WT) mice using a hypoxia-induced PH model. Human pulmonary artery smooth muscle cells (PASMCs) were used for in vitro experiments with small interfering RNA (siRNA) to investigate the possible molecular mechanisms. From the analysis of right ventricular pressure, right ventricular weight, and mortality rate, we concluded that the hypoxia-induced PH development was remarkably higher in TIGAR KO than in WT mice. Pathological investigation revealed that medial thickening of the pulmonary arterioles and cell proliferation were increased in TIGAR KO mice. Autophagy and ROS activity were also increased in TIGAR KO mice. TIGAR knockdown by siRNA increased cell proliferation and migration, exacerbated autophagy, and increased ROS generation during hypoxia. Autophagy inhibition by chloroquine and ROS inhibition by N-acetylcysteine attenuated the proliferation and migration of PASMCs caused by TIGAR knockdown and hypoxia exposure. TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. Thus, TIGAR might be a promising therapeutic target for PAH.NEW & NOTEWORTHY Pulmonary arterial hypertension is a refractory disease. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). By using TIGAR-deficient knockout mice and human pulmonary artery smooth muscle cells, we found that TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. TIGAR will be a promising therapeutic target for PAH.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Hipoxia de la Célula , Movimiento Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/fisiología , Monoéster Fosfórico Hidrolasas/genética
3.
J Clin Biochem Nutr ; 67(3): 228-231, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33293762

RESUMEN

Thioredoxin is a low molecular weight (approximately 12 kDa) redox protein, and protects against harmful stimuli such as oxidative stress. Smoking evokes oxidative stress, among other biological responses. The clinical relevance of thioredoxin in smoking has not been fully investigated. Here, we examined the effects of smoking on serum and urinary thioredoxin levels, in comparison with various stress markers. Serum thioredoxin levels in the smoking group (10 subjects) were significantly higher than those of the non-smoking group (5 subjects). After smoking, serum thioredoxin levels significantly decreased, while urinary levels significantly increased. On the other hand, the levels of serum and salivary cortisol, plasma norepinephrine, salivary amylase, salivary thioredoxin, and urinary 8-hydroxy-2'-deoxyguanosine levels before and after smoking were not significantly different. These results suggest that a decrease in thioredoxin in the serum and the concomitant increase in the urine is a novel sensitive marker of biological stress responses induced by smoking. The change seems to be evoked by mechanisms different from hormonal or 8-hydroxy-2'-deoxyguanosine-forming stress responses.

4.
Am J Physiol Heart Circ Physiol ; 316(6): H1366-H1377, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901275

RESUMEN

Despite the advances in medical therapy, the morbidity and mortality of heart failure (HF) remain unacceptably high. HF results from reduced metabolism-contraction coupling efficiency, so the modulation of cardiac metabolism may be an effective strategy for therapeutic interventions. Tumor suppressor p53 (TP53) and its downstream target TP53-induced glycolysis and apoptosis regulator (TIGAR) are known to modulate cardiac metabolism and cell fate. To investigate TIGAR's function in HF, we compared myocardial, metabolic, and functional outcomes between TIGAR knockout (TIGAR-/-) mice and wild-type (TIGAR+/+) mice subjected to chronic thoracic transverse aortic constriction (TAC), a pressure-overload HF model. In wild-type mice hearts, p53 and TIGAR increased markedly during HF development. Eight weeks after TAC surgery, the left ventricular (LV) dysfunction, fibrosis, oxidative damage, and myocyte apoptosis were significantly advanced in wild-type than in TIGAR-/- mouse heart. Further, myocardial high-energy phosphates in wild-type hearts were significantly decreased compared with those of TIGAR-/- mouse heart. Glucose oxidation and glycolysis rates were also reduced in isolated perfused wild-type hearts following TAC than those in TIGAR-/- hearts, which suggest that the upregulation of TIGAR in HF causes impaired myocardial energetics and function. The effects of TIGAR knockout on LV function were also replicated in tamoxifen (TAM)-inducible cardiac-specific TIGAR knockout mice (TIGARflox/flox/Tg(Myh6-cre/Esr1) mice). The ablation of TIGAR during pressure-overload HF preserves myocardial function and energetics. Thus, cardiac TIGAR-targeted therapy to increase glucose metabolism will be a novel strategy for HF. NEW & NOTEWORTHY The present study is the first to demonstrate that TP53-induced glycolysis and apoptosis regulator (TIGAR) is upregulated in the myocardium during experimental heart failure (HF) in mice and that TIGAR knockout can preserve the heart function and myocardial energetics during HF. Reducing TIGAR to enhance myocardial glycolytic energy production is a promising therapeutic strategy for HF.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocardio/patología , Monoéster Fosfórico Hidrolasas/deficiencia , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Modelos Animales de Enfermedad , Fibrosis , Glucólisis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
5.
Am J Physiol Heart Circ Physiol ; 312(2): H305-H313, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011586

RESUMEN

Failing heart loses its metabolic flexibility, relying increasingly on glucose as its preferential substrate and decreasing fatty acid oxidation (FAO). Peroxisome proliferator-activated receptor α (PPAR-α) is a key regulator of this substrate shift. However, its role during heart failure is complex and remains unclear. Recent studies reported that heart failure develops in the heart of myosin heavy chain-PPAR-α transgenic mice in a manner similar to that of diabetic cardiomyopathy, whereas cardiac dysfunction is enhanced in PPAR-α knockout mice in response to chronic pressure overload. We created a pressure-overload heart failure model in mice through transverse aortic constriction (TAC) and activated PPAR-α during heart failure using an inducible transgenic model. After 8 wk of TAC, left ventricular (LV) function had decreased with the reduction of PPAR-α expression in wild-type mice. We examined the effect of PPAR-α induction during heart failure using the Tet-Off system. Eight weeks after the TAC operation, LV construction was preserved significantly by PPAR-α induction with an increase in PPAR-α-targeted genes related to fatty acid metabolism. The increase of expression of fibrosis-related genes was significantly attenuated by PPAR-α induction. Metabolic rates measured by isolated heart perfusions showed a reduction in FAO and glucose oxidation in TAC hearts, but the rate of FAO preserved significantly owing to the induction of PPAR-α. Myocardial high-energy phosphates were significantly preserved by PPAR-α induction. These results suggest that PPAR-α activation during pressure-overloaded heart failure improved myocardial function and energetics. Thus activating PPAR-α and modulation of FAO could be a promising therapeutic strategy for heart failure.NEW & NOTEWORTHY The present study demonstrates the role of PPAR-α activation in the early stage of heart failure using an inducible transgenic mouse model. Induction of PPAR-α preserved heart function, and myocardial energetics. Activating PPAR-α and modulation of fatty acid oxidation could be a promising therapeutic strategy for heart failure.


Asunto(s)
Metabolismo Energético/genética , Insuficiencia Cardíaca/genética , Contracción Miocárdica/genética , Miocardio/metabolismo , PPAR alfa/genética , Disfunción Ventricular Izquierda/genética , Animales , Aorta/cirugía , Western Blotting , Modelos Animales de Enfermedad , Ecocardiografía , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Oxidación-Reducción , PPAR alfa/agonistas , Fosfatos/metabolismo , Pirimidinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
6.
Proc Natl Acad Sci U S A ; 111(8): 3116-21, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516131

RESUMEN

Mitochondrial compromise is a fundamental contributor to pancreatic ß-cell failure in diabetes. Previous studies have demonstrated a broader role for tumor suppressor p53 that extends to the modulation of mitochondrial homeostasis. However, the role of islet p53 in glucose homeostasis has not yet been evaluated. Here we show that p53 deficiency protects against the development of diabetes in streptozotocin (STZ)-induced type 1 and db/db mouse models of type 2 diabetes. Glucolipotoxicity stimulates NADPH oxidase via receptor for advanced-glycation end products and Toll-like receptor 4. This oxidative stress induces the accumulation of p53 in the cytosolic compartment of pancreatic ß-cells in concert with endoplasmic reticulum stress. Cytosolic p53 disturbs the process of mitophagy through an inhibitory interaction with Parkin and induces mitochondrial dysfunction. The occurrence of mitophagy is maintained in STZ-treated p53(-/-) mice that exhibit preserved glucose oxidation capacity and subsequent insulin secretion signaling, leading to better glucose tolerance. These protective effects are not observed when Parkin is deleted. Furthermore, pifithrin-α, a specific inhibitor of p53, ameliorates mitochondrial dysfunction and glucose intolerance in both STZ-treated and db/db mice. Thus, an intervention with cytosolic p53 for a mitophagy deficiency may be a therapeutic strategy for the prevention and treatment of diabetes.


Asunto(s)
Diabetes Mellitus/fisiopatología , Células Secretoras de Insulina/metabolismo , Mitofagia/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Benzotiazoles/farmacología , Línea Celular , Estrés del Retículo Endoplásmico/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Estrés Oxidativo/fisiología , Interferencia de ARN , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
7.
Biochem Biophys Res Commun ; 456(1): 250-6, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25446079

RESUMEN

Alpha-adrenergic agonists is known to be protective in cardiac myocytes from apoptosis induced by beta-adrenergic stimulation. Although there has been a recent focus on the role of cardiac autophagy in heart failure, its role in heart failure with adrenergic overload has not yet been elucidated. In the present study, we investigated the contribution of autophagy to cardiac failure during adrenergic overload both in vitro and in vivo. Neonatal rat cardiac myocytes overexpressing GFP-tagged LC3 were prepared and stimulated with the alpha1-adrenergic agonist, phenylephrine (PE), the beta-adrenergic agonist, isoproterenol (ISO), or norepinephrine (NE) in order to track changes in the formation of autophagosomes in vitro. All adrenergic stimulators increased cardiac autophagy by stimulating autophagic flux. Blocking autophagy by the knockdown of autophagy-related 5 (ATG5) exacerbated ISO-induced apoptosis and negated the anti-apoptotic effects of PE, which indicated the cardioprotective role of autophagy during adrenergic overload. PE-induced cardiac autophagy was mediated by the PI3-kinase/Akt pathway, but not by MEK/ERK, whereas both pathways mediated the anti-apoptotic effects of PE. Knock down of Akt1 was the most essential among the three Akt family members examined for the induction of cardiac autophagy. The four-week administration of PE kept the high level of cardiac autophagy without heart failure in vivo, whereas autophagy levels in a myocardium impaired by four-week persistent administration of ISO or NE were the same with the control state. These present study indicated that cardiac autophagy played a protective role during adrenergic overload and also that the Akt pathway could mediate cardiac autophagy for the anti-apoptotic effects of the alpha-adrenergic pathway.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Autofagia , Insuficiencia Cardíaca/metabolismo , Corazón/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Cardiotónicos/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Insuficiencia Cardíaca/prevención & control , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Norepinefrina/farmacología , Fenilefrina/farmacología , Ratas , Serina-Treonina Quinasas TOR/metabolismo
8.
J Mol Cell Cardiol ; 52(1): 175-84, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22044588

RESUMEN

Inhibition of tumor suppressor p53 is cardioprotective against ischemic injury and provides resistance to subsequent cardiac remodeling. We investigated p53-mediated expansion of ischemic damage with a focus on mitochondrial integrity in association with autophagy and apoptosis. p53(-/-) heart showed that autophagic flux was promoted under ischemia without a change in cardiac tissue ATP content. Electron micrographs revealed that ischemic border zone in p53(-/-) mice had 5-fold greater numbers of autophagic vacuoles containing mitochondria, indicating the occurrence of mitophagy, with an apparent reduction of abnormal mitochondria compared with those in WT mice. Analysis of autophagic mediators acting downstream of p53 revealed that TIGAR (TP53-induced glycolysis and apoptosis regulator) was exclusively up-regulated in ischemic myocardium. TIGAR(-/-) mice exhibited the promotion of mitophagy followed by decrease of abnormal mitochondria and resistance to ischemic injury, consistent with the phenotype of p53(-/-) mice. In p53(-/-) and TIGAR(-/-) ischemic myocardium, ROS production was elevated and followed by Bnip3 activation which is an initiator of mitophagy. Furthermore, the activation of Bnip3 and mitophagy due to p53/TIGAR inhibition were reversed with antioxidant N-acetyl-cysteine, indicating that this adaptive response requires ROS signal. Inhibition of mitophagy using chloroquine in p53(-/-) or TIGAR(-/-) mice exacerbated accumulation of damaged mitochondria to the level of wild-type mice and attenuated cardioprotective action. These findings indicate that p53/TIGAR-mediated inhibition of myocyte mitophagy is responsible for impairment of mitochondrial integrity and subsequent apoptosis, the process of which is closely involved in p53-mediated ventricular remodeling after myocardial infarction.


Asunto(s)
Isquemia Miocárdica/metabolismo , Proteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis , Autofagia/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/genética , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Remodelación Ventricular/genética
9.
Clin Chim Acta ; 523: 224-230, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34599901

RESUMEN

BACKGROUND: Warfarin therapy influences generation of γ-carboxyglutamyl (Gla) residues in prothrombin, causing reduced coagulation activity. It will leave such inactive prothrombin in serum after clot formation, resulting in serum prothrombin constituting total inactive prothrombin in these patients. METHODS: An ELISA was developed to measure biologically inactive prothrombin in serum, and applied to serum from warfarin therapy causing a decrease in Gla residues or direct oral anticoagulant (DOAC) therapy as its contrast. RESULTS: The concentrations of serum prothrombin in both the warfarin and DOAC groups were higher than those in the healthy group (p < 0.01 and p < 0.001, respectively). When serum in the previous three groups was treated with barium carbonate to exclude prothrombin, which lost several Gla residues, the prothrombin concentration in the DOAC group decreased to the same level as that in the healthy group, indicating that prothrombin was obtained at a high level only in the warfarin group (p < 0.01). CONCLUSIONS: Warfarin and DOAC led to increase in serum prothrombin concentration. The reason is that DOAC decreases prothrombin recruitment during fibrin clot formation, while warfarin leads to the accumulation of inactive prothrombin, which have a decreased number of Gla residues.


Asunto(s)
Fibrilación Atrial , Warfarina , Administración Oral , Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Pruebas de Coagulación Sanguínea , Humanos , Protrombina , Warfarina/uso terapéutico
10.
Am J Physiol Heart Circ Physiol ; 299(6): H1908-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20935145

RESUMEN

Bioenergetic homeostasis is altered in heart failure and may play an important role in pathogenesis. p53 has been implicated in heart failure, and although its role in regulating tumorigenesis is well characterized, its activities on cellular metabolism are just beginning to be understood. We investigated the role of p53 and its transcriptional target gene TP53-induced glycolysis and apoptosis regulator (TIGAR) in myocardial energy metabolism under conditions simulating ischemia that can lead to heart failure. Expression of p53 and TIGAR was markedly upregulated after myocardial infarction, and apoptotic myocytes were decreased by 42% in p53-deficient mouse hearts compared with those in wild-type mice. To examine the effect of p53 on energy metabolism, cardiac myocytes were exposed to hypoxia. Hypoxia induced p53 and TIGAR expression in a p53-dependent manner. Knockdown of p53 or TIGAR increased glycolysis with elevated fructose-2,6-bisphosphate levels and reduced myocyte apoptosis. Hypoxic stress decreased phosphocreatine content and the mitochondrial membrane potential of myocytes without changes in ATP content, the effects of which were prevented by the knockdown of TIGAR. Inhibition of glycolysis by 2-deoxyglucose blocked these bioenergetic effects and TIGAR siRNA-mediated prevention of apoptosis, and, in contrast, overexpression of TIGAR reduced glucose utilization and increased apoptosis. Our data demonstrate that p53 and TIGAR inhibit glycolysis in hypoxic myocytes and that inhibition of glycolysis is closely involved in apoptosis, suggesting that p53 and TIGAR are significant mediators of cellular energy homeostasis and cell death under ischemic stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Metabolismo Energético , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas/metabolismo , Estrés Fisiológico , Proteína p53 Supresora de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Hipoxia de la Célula , Células Cultivadas , Desoxiglucosa/metabolismo , Modelos Animales de Enfermedad , Glucólisis , Homeostasis , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Fosfocreatina/metabolismo , Fosfofructoquinasa-2/metabolismo , Monoéster Fosfórico Hidrolasas , Proteínas/genética , Interferencia de ARN , Ratas , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA