Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791473

RESUMEN

Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Grafito , Estrés Oxidativo , Inhibidores de Proteasoma , Humanos , Grafito/farmacología , Grafito/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Femenino , Leupeptinas/farmacología , Sinergismo Farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891843

RESUMEN

Mesotrione, as a widely used herbicide, is present in the environment in detectable amounts, causing serious damage. Here, we aimed to investigate the effect of mesotrione on Caco-2 cells and the possibility of its toxicity mitigation by cichoric acid. Therefore, we analyzed the cytotoxicity of both these compounds and the selected oxidative stress parameters, apoptosis and interaction of both the tested compounds with the cell membrane and their accumulation within the cells. In cytotoxicity studies, the stimulating activity of mesotrione was observed, and simultaneously, the inhibitory effect of cichoric acid was noticed. This effect was related to the results of oxidative stress analysis and apoptosis measurements. The activity level of key enzymes (glutathione peroxidase, catalase and superoxide dismutase) in Caco-2 cells exposed to cichoric acid was higher as compared to that of the control. The treatment with mesotrione did not induce apoptosis in the Caco-2 cells. The penetration of the studied compounds into the Caco-2 cells was measured by using an HPLC methodology, and the results indicate mesotrione's high penetration capacity. The distribution of charge on the surface of the cell membranes changed under the influence of both compounds. Considering the mutual interactions of beneficial and potentially toxic food ingredients, it should be noted that, despite the observed favorable trend, cichoric acid is not able to overcome the toxic and cancer-stimulating effects of this pesticide.


Asunto(s)
Apoptosis , Ácidos Cafeicos , Ciclohexanonas , Estrés Oxidativo , Humanos , Células CACO-2 , Apoptosis/efectos de los fármacos , Ciclohexanonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Ácidos Cafeicos/farmacología , Succinatos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Herbicidas/toxicidad , Superóxido Dismutasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768363

RESUMEN

Breast cancer is one of the most common cancers in women. Silica nanoparticles (SiNPs) belong to the group of often-used nanoparticles in biomedical applications. The mechanisms of the cytotoxicity, apoptosis, and oxidative stress induced by the 5-15 nm SiNPs still remain unclear. The aim of the study was to evaluate the anti-cancer effect and mechanism of action of SiNPs in breast cancer cell lines. The breast cancer MDA-MB-231 and ZR-75-1 cell lines were analyzed using MTT assay, flow cytometry, and spectrophotometric methods. In this paper, we presented findings about the cytotoxicity, apoptosis, and oxidative stress in both breast cancer cell lines. We indicated that 5-15 nm SiNPs induced dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cells. Moreover, we demonstrated that the process of apoptosis in the studied cell lines was associated with a decrease in the mitochondrial membrane potential (ΔΨm) and an increase in the activity of caspase-9 and caspase-3. Based on the obtained results, 5-15 nm SiNPs are able to induce the mitochondrial apoptosis pathway. Analyzed nanoparticles have also been found to cause an increase in selected oxidative stress parameters in both breast cancer cell lines. The presented study provides an explanation of the possible mechanisms of 5-15 nm SiNPs action in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Dióxido de Silicio , Femenino , Humanos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Nanopartículas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Dióxido de Silicio/farmacología , Dióxido de Silicio/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos
4.
Molecules ; 28(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959855

RESUMEN

An increasing level of pesticide exposition is being observed as a result of the consumption of large amounts of fruits, vegetables and grain products, which are key components of the vegetarian diet. Fungicides have been classified as endocrine-disrupting compounds, but their mechanisms of action have not yet been clarified. The effect of boscalid (B), cyprodinil (C) and iprodione (I) combined with Tamoxifen (T) and 17ß-estradiol (E2) on cell viability, cell proliferation, reporter gene expression, ROS content, the cell membrane's function, cell morphology and antioxidant enzymes gene expression in MCF-7 and T47D-KBluc cell lines were investigated. The cell lines were chosen due to their response to 17ß -estradiol. The selected fungicides are commonly used in Poland to protect crops against fungi. Our results revealed that the studied fungicides caused significant increases in cell viability and proliferation, and estrogenic activity was present in all studied compounds depending on their concentrations. Oxidative stress activated uncontrolled cancer cell proliferation by inducing ROS production and by inhibiting antioxidant defense. Our findings verify that the studied fungicides could possibly exhibit endocrine-disrupting properties and exposure should be avoided.


Asunto(s)
Estrógenos , Fungicidas Industriales , Estrógenos/farmacología , Fungicidas Industriales/farmacología , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Estradiol/farmacología , Estrona
5.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830472

RESUMEN

Breast cancer is the most common cancer diagnosed in women, however traditional therapies have several side effects. This has led to an urgent need to explore novel drug approaches to treatment strategies such as graphene-based nanomaterials such as reduced graphene oxide (rGO). It was noticed as a potential drug due to its target selectivity, easy functionalisation, chemisensitisation, and high drug-loading capacity. rGO is widely used in many fields, including biological and biomedical, due to its unique physicochemical properties. However, the possible mechanisms of rGO toxicity remain unclear. In this paper, we present findings on the cytotoxic and antiproliferative effects of rGO and its ability to induce oxidative stress and apoptosis of breast cancer cell lines. We indicate that rGO induced time- and dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cell lines, but not in T-47D, MCF-7, Hs 578T cell lines. In rGO-treated MDA-MB-231 and ZR-75-1 cell lines, we noticed increased induction of apoptosis and necrosis. In addition, rGO has been found to cause oxidative stress, reduce proliferation, and induce structural changes in breast cancer cells. Taken together, these studies provide new insight into the mechanism of oxidative stress and apoptosis in breast cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Grafito/farmacología , Nanopartículas/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
Environ Geochem Health ; 43(9): 3683-3698, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33675453

RESUMEN

Leachate from landfills is a product of complex biological and physicochemical processes occurring during waste storage. In the present study, the toxicity of landfill leachate (LL) to human and bacterial cells was investigated for better understanding of LL environmental toxicity. Studies regarding LL physicochemical properties and cytotoxicity analysis were conducted. In Escherichia coli, Pseudomonas fluorescens, Bacillus subtilis, fibroblasts and melanoma A-375 cells, cell viability assays were applied. For the determination of LL antibacterial activity, twofold dilution series of LL were prepared in the range from 50% to 0.1% (50%, 25%, 12.5%, 6.25%, 3.13%, 1.56%, 0.78%, 0.39%, 0.2%, 0.1%). Human cells viability was examined at LL concentrations of 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 5%, 10%, 15%, 20% and 30%. ROS (reactive oxygen species) content and apoptosis level were also measured in bacterial and human cells under the influence of LL. Unexpectedly obtained results indicate stimulation of bacterial viability by LL. Fibroblasts under the influence of LL showed decrease in their viability and increase in apoptosis level and A-375 melanoma cells showed an increase in relative viability and decrease in apoptosis. ROS level in bacterial cells was elevated in higher LL concentrations and decreased in lower LL concentrations. In human cells, ROS content was rather high in both tested cell lines. Presented results indicate cytotoxic potential of analyzed LL and the necessity of LL monitoring because it may pose a health hazard for exposed human populations and the whole human environment.


Asunto(s)
Agua Subterránea , Eliminación de Residuos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Regul Toxicol Pharmacol ; 106: 137-146, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31055047

RESUMEN

Traumatic acid (TA) - an oxidative derivative of unsaturated fatty acids, belongs to the cytokinins category - a group of plant hormones, which play an important role in growth and development. Previously we demonstrated its positive influence on oxidative stress parameters in normal human fibroblasts, therefore we decided to investigate its activity in cancer cells. MCF-7 breast cancer cell line was chosen as an experimental model because of proved association between the consumption of dietary fat and the incidence of breast cancer. TA cytotoxicity and its effects on MCF-7 cells proliferation, viability, apoptosis/necrosis, thiol group content, lipid peroxidation, reduced/oxidized glutathione (GSH/GSSG) and ROS (reactive oxygen species) content was examined. The results show a significant effect of TA on tested parameters. TA caused a decrease in cells proliferation and viability, GSH/GSSG ratio and thiol group content. It increases caspase 7 activity, membrane lipid peroxidation and ROS content, simultaneously reducing breast cancer cell growth through oxidative stress influence on apoptosis. The present findings reveal that TA exhibits multiple and complex activity in MCF-7 breast cancer cells and it exhibits potential anticancer properties and tumor preventive activity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ácidos Dicarboxílicos/farmacología , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácidos Dicarboxílicos/efectos adversos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Peroxidación de Lípido/efectos de los fármacos , Células MCF-7 , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Molecules ; 24(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052542

RESUMEN

The main consequence of herbicides use is the presence of their residues in food of plant origin. A growing body of evidence indicates that herbicides cause detrimental effects upon human health while demonstrating a direct link of pesticides exposure with the occurrence of human chronic diseases, including cancer. There is a pressing need to develop our knowledge regarding interactions of food contaminants and food components both in vitro and in vivo. Pesticides are highly undesirable food contaminants, and traumatic acid (TA) is a very beneficial food ingredient, therefore we decided to study if TA may act as a compound that delays the stimulatory effect of pesticides on breast cancer cells. To analyze the potential effects that selected herbicides (MCPA, mesotrione, bifenox and dichlobenil) may have upon cancerous cells, we conducted studies of the cytotoxicity of physiological concentrations of four pesticides and the mix of TA with tested herbicides in three different breast cancer cell lines (MCF-7, ZR-75-1 and MDA-MB-231) and one normal healthy breast cell line MCF-12A. Based on the obtained results we conclude that TA in a concentration-dependent manner might influence selected effects of the studied herbicides for particular cancer cells lines.


Asunto(s)
Ácidos Dicarboxílicos/toxicidad , Herbicidas/toxicidad , Neoplasias de la Mama , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos
9.
Molecules ; 22(7)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28677642

RESUMEN

Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Doxorrubicina/farmacología , Metales/química , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7
10.
J Environ Sci Health B ; 52(7): 483-494, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28541098

RESUMEN

Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Línea Celular , Fungicidas Industriales/toxicidad , Herbicidas/toxicidad , Humanos
11.
Mol Cell Biochem ; 413(1-2): 97-107, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26738489

RESUMEN

N6-benzyladenine and kinetin are adenine-type cytokinins that play various roles in many aspects of plant development and stimulate anabolic processes in plant cells. The aim of this study was to examine the effect of N6-benzyladenine and kinetin on basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione and thiol group content, and lipid peroxidation. The results show a stimulatory effect of kinetin and N6-benzyladenine on antioxidative enzyme activity, as well as reduced glutathione and thiol group content. Cytokinins caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against malondialdehyde production. The present findings reveal that both N6-benzyladenine and kinetin exhibit multiple and complex actions in fibroblast cells in vitro. Both show antioxidant properties and are potentially powerful agents with applications in the prevention and treatment of many diseases connected with oxidative stress in skin, for example, psoriasis.


Asunto(s)
Fibroblastos/efectos de los fármacos , Cinetina/farmacología , Estrés Oxidativo/efectos de los fármacos , Piel/citología , Adulto , Compuestos de Bencilo , Línea Celular , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Glutatión/metabolismo , Humanos , Cinetina/química , Peroxidación de Lípido/efectos de los fármacos , Purinas , Compuestos de Sulfhidrilo/metabolismo
12.
J Enzyme Inhib Med Chem ; 31(sup1): 177-183, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27028474

RESUMEN

The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.


Asunto(s)
Antineoplásicos/farmacología , Colágeno/metabolismo , Matriz Extracelular/enzimología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/química , Neoplasias/metabolismo , Neoplasias/patología , Relación Estructura-Actividad
13.
Pharmaceuticals (Basel) ; 17(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38931371

RESUMEN

The importance of natural plant materials in modern medicine is considerable, and raw materials with antiviral, antibacterial, antifungal, and anticancer properties are still sought because of microbe resistance and difficulties in anticancer therapy. This review focuses on the lemongrass Cymbopogon citratus (DC.) Stapf. and on the lemongrass oil properties and applications. Multiple applications of this plant were described in different latitudes and cultures, including cases of digestive disorders and anti-inflammatory, antipyretic, diaphoretic, stimulating, and antispasmodic conditions. Data from the literature on the composition of essential oil and extracts from C. citratus were analyzed, and the results of research on the antifungal, antibacterial, and antiviral effects were quoted. Essential oil inhibits the growth of fungi (Aspergillus niger, A. fumigatus, Candida spp.) and has an antibacterial effect (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa). It also shows antiviral activity and deters insects. Lemongrass contains active substances with potential anticancer effects. This plant has apoptosis-stimulating properties, mainly through the activity of apigenin, which is the main active flavonoid in this plant. This active substance helps inhibit cell proliferation by stopping the cell cycle and directing cancer cells toward apoptosis.

14.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893840

RESUMEN

Spectroscopic studies (FT-IR, Raman, 1H, and 13C NMR, UV-VIS) of caffeic acid (CFA) and its conjugates, i.e., caftaric acid (CTA), cichoric acid (CA), and cynarin (CY), were carried out. The antioxidant activity of these compounds was determined by a superoxide dismutase (SOD) activity assay and the hydroxyl radical (HO•) inhibition assay. The cytotoxicity of these compounds was performed on DLD-1 cell lines. The molecules were theoretically modeled using the B3LYP-6-311++G(d,p) method. Aromaticity indexes (HOMA, I6, BAC, Aj), HOMO and LUMO orbital energies and reactivity descriptors, NBO electron charge distribution, EPS electrostatic potential maps, and theoretical IR and NMR spectra were calculated for the optimized model systems. The structural features of these compounds were discussed in terms of their biological activities.

15.
PLoS One ; 19(6): e0299372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885237

RESUMEN

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Asunto(s)
Hidroxibenzoatos , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Células CACO-2 , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Ácido Gálico/química , Ácido Gálico/farmacología , Cinamatos/química , Cinamatos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología
16.
Water Environ Res ; 95(9): e10920, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610032

RESUMEN

Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.


Asunto(s)
Contaminantes Ambientales , Triclosán , Triclosán/toxicidad , Aguas Residuales , Suelo
17.
Front Biosci (Elite Ed) ; 15(4): 28, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38163940

RESUMEN

Inflammation has been confirmed to exist in the tumor microenvironment, while the risk of cancer occurrence increases in cases of chronic inflammation. It is estimated that approximately 10% to 20% of cancers are associated with chronic infections and attendant inflammation. Bacteria, both pathogenic and commensal, viruses, and fungi actively participate in the development and maintenance of inflammation and tumor growth in humans. The exposome, which is a sum of human environmental exposures, such as industrial diet, consumed drugs, and toxins, affects the composition and function of the human microbiome, which could lead to dysbiosis and disorders in tissue homeostasis through different mechanisms, including the intensification of the immune response, activation and abnormal proliferation, and disruption to epithelial barrier integrity. Presently, science remains at the stage of revealing the complexity associated with the mechanisms involved in building relationships that cover the microbiome-inflammation-tumor, yet it is already known how important it is to care for microbial homeostasis of the organism.


Asunto(s)
Microbiota , Neoplasias , Humanos , Microbiota/fisiología , Inflamación , Carcinogénesis , Microambiente Tumoral
18.
J Environ Health Sci Eng ; 20(2): 1035-1045, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36406617

RESUMEN

Introduction: The relationship between pesticide exposure and the occurrence of many chronic diseases, including cancer, is confirmed by literature data. Methods: In this review, through the analysis of more than 70 papers, we explore an increase in oxidative stress level caused by exposure to environmental pollutants and the protective effects of plant-origin antioxidants. Results and discussion: One of the molecular mechanisms, by which pesticides affect living organisms is the induction of oxidative stress. However, recently many plant-based dietary ingredients with antioxidant properties have been considered as a chemopreventive substances due to their ability to remove free radicals. Such a food component must meet several conditions: eliminate free radicals, be easily absorbed and function at an appropriate physiological level. Its main function is to maintain the redox balance and minimize the cellular damage caused by ROS. Therefore, it should be active in aqueous solutions and membrane domains. These properties are characteristic for phenolic compounds and selected plant hormones. Phenolic compounds have proven antioxidant properties, while increasing number of compounds from the group of plant hormones with a very diverse chemical structure turn out to act as antioxidants, being potential food ingredients that can eliminate negative effects of pesticides.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36231509

RESUMEN

Chlorpyrifos (CPF) was the most frequently used pesticide in food production in the European Union (EU) until 2020. Unfortunately, this compound is still being applied in other parts of the world. National monitoring of pesticides conducted in various countries indicates the presence of CPF in soil, food, and water, which may have toxic effects on consumers, farmers, and animal health. In addition, CPF may influence changes in the population of fungi, bacteria, and actinomycete in soil and can inhibit nitrogen mineralization. The mechanisms of CPF activity are based on the inhibition of acetylcholinesterase (AChE) activity. This compound also exhibits reproductive toxicity, neurotoxicity, and genotoxicity. The problem seems to be the discrepancy between the actual observations and the final conclusions drawn for the substance's approval in reports presenting the toxic impact of CPF on human health. Therefore, this influence is still a current and important issue that requires continuous monitoring despite its withdrawal from the market in the EU. This review traces the scientific reports describing the effects of CPF resulting in changes occurring in both the environment and at the cellular and tissue level in humans and animals. It also provides an insight into the hazards and risks to human health in food consumer products in which CPF has been detected.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Acetilcolinesterasa , Animales , Cloropirifos/toxicidad , Humanos , Nitrógeno , Suelo , Agua
20.
Sci Rep ; 12(1): 3692, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256690

RESUMEN

Caffeic acid (CA) is a phenolic compound synthesized by all plant species. It constitutes the main hydroxycinnamic acid found in human diet and presents a variety of beneficial effects including anticancer activity. Current data suggests essential role of the interplay between anticancer drugs and the cell membrane. Given this, biophysical interactions between CA and cancer cells or biomimetic membranes were investigated. Glioblastoma cell line U118MG and colorectal adenocarcinoma cell line DLD-1, as well as lipid bilayers and liposomes, were used as in vitro models. Electrophoretic light scattering was used to assess the effect of CA on the surface charge of cancer cells and liposomal membranes. Electrochemical impedance spectroscopy was chosen to evaluate CA-dependent modulatory effect on the electrical capacitance and electrical resistance of the bilayers. Our results suggest that CA fulfills physicochemical criteria determining drug-like properties of chemical compounds, and may serve as a potential cytostatic agent in cancer treatment.


Asunto(s)
Biomimética , Neoplasias , Ácidos Cafeicos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Liposomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA