Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(21): 4290-4300, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973381

RESUMEN

Treacher Collins syndrome (TCS) is a craniofacial disorder that is characterized by the malformation of the facial bones. Mutations in three genes (TCOF1, POLR1C and POLR1D) involved in RNA polymerase I (Pol I) transcription account for more than 90% of disease cases. Two of these TCS-associated genes, POLR1C and POLR1D, encode for essential Pol I/III subunits that form a heterodimer necessary for Pol I/III assembly, and many TCS mutations lie along their evolutionarily conserved dimerization interface. Here we elucidate the molecular basis of TCS mutations in Saccharomyces cerevisiae, and present a new model for how TCS mutations may disrupt Pol I and III complex integrity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Disostosis Mandibulofacial/genética , ARN Polimerasa III/genética , ARN Polimerasa I/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes Reguladores , Humanos , Disostosis Mandibulofacial/metabolismo , Mutación , ARN Polimerasa I/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194408, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31382053

RESUMEN

In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.


Asunto(s)
ADN Ribosómico/genética , ARN Polimerasa I/genética , Factores de Transcripción/genética , Transcripción Genética , Benzotiazoles/farmacología , Secuencia Conservada/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Humanos , Naftiridinas/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Polimerasa I/química , Saccharomyces cerevisiae/genética , Factores de Transcripción/química
3.
Transcription ; 9(4): 255-261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29264963

RESUMEN

While structures of the RNA polymerase (Pol) II initiation complex have been resolved and extensively studied, the Pol I initiation complex remained elusive. Here, we review the recent structural analyses of the yeast Pol I transcription initiation complex that reveal several unique and unexpected Pol I-specific properties.


Asunto(s)
ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Iniciación de la Transcripción Genética
4.
J Mol Biol ; 430(5): 641-654, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29357286

RESUMEN

RNA polymerase I (Pol I) transcription in Saccharomyces cerevisiae requires four separate factors that recruit Pol I to the promoter to form a pre-initiation complex. Upstream Activating Factor (UAF) is one of two multi-subunit complexes that regulate pre-initiation complex formation by binding to the ribosomal DNA promoter and by stimulating recruitment of downstream Pol I factors. UAF is composed of Rrn9, Rrn5, Rrn10, Uaf30, and histones H3 and H4. We developed a recombinant Escherichia coli-based system to coexpress and purify transcriptionally active UAF complex and to investigate the importance of each subunit in complex formation. We found that no single subunit is required for UAF assembly, including histones H3 and H4. We also demonstrate that histone H3 is able to interact with each UAF-specific subunit, and show that there are at least two copies of histone H3 and one copy of H4 present in the complex. Together, our results provide a new model suggesting that UAF contains a hybrid H3-H4 tetramer-like subcomplex.


Asunto(s)
Histonas/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional
5.
Elife ; 62017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28623663

RESUMEN

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


Asunto(s)
ADN de Hongos/ultraestructura , Proteínas del Complejo de Iniciación de Transcripción Pol1/ultraestructura , ARN Polimerasa I/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/enzimología , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN de Hongos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Unión Proteica , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA