Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(1): 212-224.e4, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650377

RESUMEN

Microbiota are thought to influence the development and progression of inflammatory bowel disease (IBD), but determining generalizable effects of microbiota on IBD etiology requires larger-scale functional analyses. We colonized germ-free mice with intestinal microbiotas from 30 healthy and IBD donors and determined the homeostatic intestinal T cell response to each microbiota. Compared to microbiotas from healthy donors, transfer of IBD microbiotas into germ-free mice increased numbers of intestinal Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells. Colonization with IBD microbiotas exacerbated disease in a model where colitis is induced upon transfer of naive T cells into Rag1-/- mice. The proportions of Th17 and RORγt+ Treg cells induced by each microbiota were predictive of human disease status and accounted for disease severity in the Rag1-/- colitis model. Thus, an impact on intestinal Th17 and RORγt+ Treg cell compartments emerges as a unifying feature of IBD microbiotas, suggesting a general mechanism for microbial contribution to IBD pathogenesis.


Asunto(s)
Colitis/microbiología , Microbioma Gastrointestinal/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , ARN Ribosómico 16S/genética , Linfocitos T Reguladores/inmunología , Células Th17/metabolismo , Animales , Diferenciación Celular , Colitis/inducido químicamente , Colitis/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
2.
Environ Res ; 248: 118242, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242419

RESUMEN

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Ratones , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/análisis , ARN Ribosómico 16S , Estudios Transversales , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inflamación/inducido químicamente
3.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627687

RESUMEN

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad de Parkinson , Plaguicidas , Anciano , Humanos , Bacterias , Compuestos Organofosforados , Plaguicidas/efectos adversos , ARN Ribosómico 16S/genética
4.
J Lipid Res ; 64(5): 100370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059333

RESUMEN

Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.


Asunto(s)
Antiinfecciosos , Aterosclerosis , Dislipidemias , Ratones , Animales , Lisofosfatidilcolinas , Enterocitos/metabolismo , Lipopolisacáridos , Especies Reactivas de Oxígeno , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dieta Occidental , Inflamación/genética , Dislipidemias/metabolismo , Aterosclerosis/genética
5.
Clin Gastroenterol Hepatol ; 21(3): 741-749.e3, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35952942

RESUMEN

BACKGROUND & AIMS: Although perceived stress (PS) has been associated with symptomatic flares in inflammatory bowel disease, clinical and physiological measures associated with perceived stress and flare are not known. The aim of this study was to identify physiological factors associated with perceived stress in ulcerative colitis (UC) subjects, and their relationship with flare. METHODS: Patients with UC in clinical remission (Simple Colitis Clinical Activity Index [SCCAI] score <5) underwent clinical and behavioral assessments, morning salivary cortisol measurements, autonomic nervous system activity testing (heart rate variability, electrodermal activity) at baseline with patient-reported SCCAI every 2 weeks over 1 to 2 years and fecal calprotectin at time of flare. Clinical flares (SCCAI ≥5) and biochemical flares (SCCAI ≥5 with fecal calprotectin ≥250 µg/g) were evaluated. RESULTS: One hundred ten patients with UC were enrolled, with mean follow-up of 65.6 weeks. Patients with UC with higher and lower PS were determined. Although the high PS group had 3.6 times higher odds of a clinical flare than the low PS group, no significant differences in biochemical flares were observed between the low and high PS groups. The high vs low PS group differed in tonic sympathetic arousal as indexed by significantly greater baseline electrodermal activity (4.3 vs 3.4 microsiemens; P = .026) in the high PS group, but not in terms of heart rate variability and morning cortisol levels. Increased fecal calprotectin was associated with cardioautonomic measures, suggesting lower parasympathetic activity. CONCLUSIONS: Increased PS assessed at baseline is associated with tonic sympathetic arousal and greater odds of clinical flares in patients with UC.


Asunto(s)
Colitis Ulcerosa , Estrés Psicológico , Brote de los Síntomas , Humanos , Colitis Ulcerosa/fisiopatología , Colitis Ulcerosa/psicología , Heces/química , Hidrocortisona , Enfermedades Inflamatorias del Intestino/fisiopatología , Enfermedades Inflamatorias del Intestino/psicología , Complejo de Antígeno L1 de Leucocito , Estrés Psicológico/fisiopatología
6.
J Lipid Res ; 63(1): 100153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808192

RESUMEN

We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.


Asunto(s)
Disbiosis
7.
Am J Physiol Gastrointest Liver Physiol ; 323(2): G134-G143, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726867

RESUMEN

Mucosal microbiota differ significantly from fecal microbiota and may play a different role in the pathophysiology of irritable bowel syndrome (IBS). The aims of this study were to determine if the composition of mucosal microbiota differed between IBS, or IBS bowel habit (BH) subtypes, and healthy controls (HCs). Sigmoid colon mucosal biopsies were obtained from 97 Rome-positive patients with IBS (28% IBS-constipation, 38% IBS-diarrhea, 24% IBS-mixed, and 10% IBS-unsubtyped) and 54 HCs, from which DNA was extracted. 16S rRNA gene sequencing and microbial composition analysis were performed. Group differences in α and ß diversity and taxonomic level differences were determined using linear regression while controlling for confounding variables. IBS BH subtype was associated with microbial α diversity (P = 0.0003) with significant differences seen in the mucosal microbiota of IBS-constipation versus IBS-diarrhea (P = 0.046). There were no significant differences in α or ß diversity in the mucosal microbiota of IBS versus HCs (P = 0.29 and 0.93, respectively), but metagenomic profiling suggested functional differences. The relative abundance of Prevotella_9 copri within IBS was significantly correlated with increased abdominal pain (r = 0.36, P = 0.0003), which has not been previously reported in IBS. Significant differences in the mucosal microbiota were present within IBS BH subtypes but not between IBS and HCs, supporting the possibility of IBS BH subtype-specific pathogenesis. Increased Prevotella copri may contribute to symptoms in patients with IBS.NEW & NOTEWORTHY Gut mucosal microbiota differs significantly from fecal microbiota in irritable bowel syndrome (IBS) and may play a different role in its pathophysiology. Investigation of colonic mucosal microbiota in the largest cohort of patients with IBS and healthy controls accounting for confounding variables, including diet demonstrated significant differences in mucosal microbiota between IBS bowel habit subtypes but not between IBS and healthy controls. In addition, the study reported gut microbiota is associated with abdominal pain in patients with IBS.


Asunto(s)
Síndrome del Colon Irritable , Microbiota , Dolor Abdominal/etiología , Estreñimiento , Diarrea , Heces , Hábitos , Humanos , Mucosa Intestinal/patología , Prevotella , ARN Ribosómico 16S/genética
8.
Clin Gastroenterol Hepatol ; 20(3): e465-e483, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022450

RESUMEN

BACKGROUND & AIMS: Altered fecal microbiota have been reported in irritable bowel syndrome (IBS), although studies vary, which could be owing to dietary effects. Many IBS patients may eliminate certain foods because of their symptoms, which in turn may alter fecal microbiota diversity and composition. This study aimed to determine if dietary patterns were associated with IBS, symptoms, and fecal microbiota differences reported in IBS. METHODS: A total of 346 IBS participants and 170 healthy controls (HCs) completed a Diet Checklist reflecting the diet(s) consumed most frequently. An exclusion diet was defined as a diet that eliminated food components by choice. Within this group, a gluten-free, dairy-free, or low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet was further defined as restrictive because they often are implicated in reducing symptoms. Stool samples were obtained from 171 IBS patients and 98 HCs for 16S ribosomal RNA gene sequencing and microbial composition analysis. RESULTS: Having IBS symptoms was associated with consuming a restrictive diet (27.17% of IBS patients vs 7.65% of HCs; odds ratio, 3.25; 95% CI, 1.66-6.75; P value = .006). IBS participants on an exclusion or restrictive diet reported more severe IBS symptoms (P = .042 and .029, respectively). The composition of the microbiota in IBS patients varied depending on the diet consumed. IBS participants on an exclusion diet had a greater abundance of Lachnospira and a lower abundance of Eubacterium (q value, <.05), and those on a restrictive diet had a lower abundance of Lactobacillus (q value, <.05). CONCLUSIONS: Restrictive diets likely are consumed more by IBS patients than HCs to reduce GI symptom severity. Dietary patterns influence the composition of the fecal microbiota and may explain some of the differences between IBS and HCs.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Dieta , Dieta Sin Gluten , Fermentación , Humanos , Síndrome del Colon Irritable/diagnóstico , Monosacáridos/efectos adversos
9.
Epilepsia ; 63(7): 1835-1848, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35366338

RESUMEN

OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Microbioma Gastrointestinal , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/genética , Humanos , Ratas , Ratas Sprague-Dawley
10.
Epilepsy Behav ; 134: 108860, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914438

RESUMEN

It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Animales , Trasplante de Microbiota Fecal , Humanos , Masculino , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley , Convulsiones
11.
Dig Dis Sci ; 67(8): 3831-3841, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34799768

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is rapidly increasing in the U.S. and is a leading cause of mortality for patients with cirrhosis. Discovering novel biomarkers for risk stratification of HCC is paramount. We examined biomarkers of the gut-liver axis in a prospective multicenter cohort. METHODS: Patients with cirrhosis without a history of HCC were recruited between May 2015 and March 2020 and prospectively followed at 3 tertiary care hospitals in Los Angeles. Microbiome analysis was performed on duodenal biopsies and metabolomic analysis was performed on serum samples, collected at the time of enrollment. Optimal microbiome-based survival analysis and Cox proportional hazards regression analysis were used to determine microbiota and metabolite associations with HCC development, respectively. RESULTS: A total of 227 participants with liver cirrhosis contributed a total of 459.58 person-years of follow-up, with 14 incident HCC diagnoses. Male sex (HR = 7.06, 95% CI = 1.02-54.86) and baseline hepatic encephalopathy (HE, HR = 4.65, 95% CI = 1.60-13.52) were associated with developing HCC over follow-up. Adjusting for age, sex, baseline HE, and alkaline phosphatase, an increased risk of HCC were observed for participants with the highest versus lowest three quartiles for duodenal Alloprevotella (HR = 3.22, 95% CI = 1.06-9.73) and serum taurocholic acid (HR = 6.87, 95% CI = 2.32-20.27), methionine (HR = 9.97, 95% CI = 3.02-32.94), and methioninesulfoxide (HR = 5.60, 95% CI = 1.84-17.10). Being in the highest quartile for Alloprevotella or methionine had a sensitivity and specificity for developing HCC of 85.71% and 60.56%, respectively, with an odds ratio of 10.92 (95% CI = 2.23-53.48). CONCLUSION: Alloprevotella and methionine, methioninesulfoxide, and taurocholic acid predicted future HCC development in a high-risk population of participants with liver cirrhosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiología , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Masculino , Metionina , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Ácido Taurocólico
12.
Int Psychogeriatr ; 34(1): 33-45, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33757609

RESUMEN

OBJECTIVES: (1) To investigate if gut microbiota can be a predictor of remission in geriatric depression and to identify features of the gut microbiota that is associated with remission. (2) To determine if changes in gut microbiota occur with remission in geriatric depression. DESIGN: Secondary analysis of a parent randomized placebo-controlled trial (NCT02466958). SETTING: Los Angeles, CA, USA (2016-2018). PARTICIPANTS: Seventeen subjects with major depressive disorder, over 60 years of age, 41.2% female. INTERVENTION: Levomilacipran (LVM) or placebo. MEASUREMENTS: Remission was defined by Hamilton Depression Rating Scale score of 6 or less at 12 weeks. 16S-ribosomal RNA sequencing based fecal microbiota composition and diversity were measured at baseline and 12 weeks. Differences in fecal microbiota were evaluated between remitters and non-remitters as well as between baseline and post-treatment samples. LVM and placebo groups were combined in all the analyses. RESULTS: Baseline microbiota showed no community level α-diversity or ß-diversity differences between remitters and non-remitters. At the individual taxa level, a random forest classifier created with nine genera from the baseline microbiota was highly accurate in predicting remission (AUC = .857). Of these, baseline enrichment of Faecalibacterium, Agathobacter and Roseburia relative to a reference frame was associated with treatment outcome of remission. Differential abundance analysis revealed significant genus level changes from baseline to post-treatment in remitters, but not in non-remitters. CONCLUSIONS: This is the first study demonstrating fecal microbiota as a potential predictor of treatment response in geriatric depression. Our findings need to be confirmed in larger prospective studies.


Asunto(s)
Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Anciano , Antidepresivos/uso terapéutico , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Resultado del Tratamiento
13.
Epilepsia ; 62(6): 1472-1481, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893636

RESUMEN

OBJECTIVE: Traumatic brain injury (TBI) may lead to the disruption of the intestinal barrier (IB), and to the escape of products of commensal gut bacteria, including lipopolysaccharide (LPS), into the bloodstream. We examined whether lateral fluid percussion injury (LFPI) and post-traumatic epilepsy (PTE) are associated with the increased intestinal permeability and endotoxemia, and whether these events in turn are associated with PTE. METHODS: LFPI was delivered to adult male Sprague-Dawley rats. Before, 1 week, and 7 months after LFPI, the IB permeability was examined by measuring plasma concentration of fluorescein isothiocyanate-labeled dextran (FD4) upon its enteral administration. Plasma LPS concentration was measured in the same animals, using enzyme-linked immunosorbent assay. PTE was examined 7 months after LFPI, with use of video-EEG (electroencephalography) monitoring. RESULTS: One week after LFPI, the IB disruption was detected in 14 of 17 and endotoxemia - in 10 of 17 rats, with a strong positive correlation between FD4 and LPS levels, and between plasma levels of each of the analytes and the severity of neuromotor deficit. Seven months after LFPI, IB disruption was detected in 13 of 15 and endotoxemia in 8 of 15 rats, with a strong positive correlation between plasma levels of the two analytes. Five of 15 LFPI rats developed PTE. Plasma levels of both FD4 and LPS were significantly higher in animals with PTE than among the animals without PTE. The analysis of seven rats, which were examined repeatedly at 1 week and at 7 months, confirmed that late IB disruption and endotoxemia were not due to lingering of impairments occurring shortly after LFPI. SIGNIFICANCE: LFPI leads to early and remote disruption of IB and a secondary endotoxemia. Early and late perturbations may occur in different subjects. Early changes reflect the severity of acute post-traumatic motor dysfunction, whereas late changes are associated with PTE.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Endotoxemia/fisiopatología , Epilepsia Postraumática/fisiopatología , Intestinos/fisiopatología , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Dextranos , Electroencefalografía , Endotoxemia/etiología , Epilepsia Postraumática/complicaciones , Fluoresceína-5-Isotiocianato/análogos & derivados , Lipopolisacáridos/sangre , Masculino , Permeabilidad , Ratas , Ratas Sprague-Dawley
14.
Dev Psychopathol ; : 1-12, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34108055

RESUMEN

Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months of age. In 67 infants, we examined if gut microbiome composition assessed at 1-3 weeks, 2, 6, and 12 months of age was associated with temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1-3 weeks was associated with surgency/extraversion at age 12 months. Bifidobacterium and Lachnospiraceae abundance at 1-3 weeks of age was positively associated with surgency/extraversion at age 12 months. Klebsiella abundance at 1-3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on neurodevelopment.

15.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G763-G772, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31545922

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC)'s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. In previous work, we have shown that metformin can prevent the increased incidence of PDAC in a KrasG12D mouse model subjected to a diet high in fat and calories (HFCD). One potential way that metformin can affect the host is through alterations in the gut microbiome. Therefore, we investigated microbial associations with PDAC development and metformin use in the same mouse model. Lox-Stop-Lox Kras G12D/+ (LSL-Kras G12D/+); p48-Cre (KC) mice were given control diet, HFCD, or HFCD with 5 mg/mL metformin in drinking water for 3 mo. At the end of the 3 mo, 16S rRNA sequencing was performed to characterize microbiome composition of duodenal mucosal, duodenal luminal, and cecal luminal samples. KC mice on an HFCD demonstrated depletion of intact acini and formation of advanced pancreatic intraepithelial neoplasia. This effect was completely abrogated by metformin treatment. HFCD was associated with significant changes in microbial composition and diversity in the duodenal mucosa and lumen, much of which was prevented by metformin. In particular, Clostridium sensu stricto was negatively correlated with percent intact acini and seemed to be inhibited by the addition of metformin while on an HFCD. Administration of metformin eliminated PDAC formation in KC mice. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin.NEW & NOTEWORTHY Pancreatic ductal adenocarcinoma (PDAC)'s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. Administration of metformin eliminated PDAC formation in KC mice with diet-induced obesity. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin.


Asunto(s)
Carcinoma Ductal Pancreático , Duodeno , Microbioma Gastrointestinal/efectos de los fármacos , Metformina/farmacología , Animales , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Duodeno/microbiología , Duodeno/patología , Hipoglucemiantes/farmacología , Ratones , Obesidad/etiología , Resultado del Tratamiento
16.
Gastroenterology ; 154(6): 1737-1750, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29360463

RESUMEN

BACKGROUND & AIMS: Clostridium difficile induces intestinal inflammation by releasing toxins A and B. The antimicrobial compound cationic steroid antimicrobial 13 (CSA13) has been developed for treating gastrointestinal infections. The CSA13-Eudragit formulation can be given orally and releases CSA13 in the terminal ileum and colon. We investigated whether this form of CSA13 reduces C difficile infection (CDI) in mice. METHODS: C57BL/6J mice were infected with C difficile on day 0, followed by subcutaneous administration of pure CSA13 or oral administration of CSA13-Eudragit (10 mg/kg/d for 10 days). Some mice were given intraperitoneal vancomycin (50 mg/kg daily) on days 0-4 and relapse was measured after antibiotic withdrawal. The mice were monitored until day 20; colon and fecal samples were collected on day 3 for analysis. Blood samples were collected for flow cytometry analyses. Fecal pellets were collected each day from mice injected with CSA13 and analyzed by high-performance liquid chromatography or 16S sequencing; feces were also homogenized in phosphate-buffered saline and fed to mice with CDI via gavage. RESULTS: CDI of mice caused 60% mortality, significant bodyweight loss, and colonic damage 3 days after infection; these events were prevented by subcutaneous injection of CSA13 or oral administration CSA13-Eudragit. There was reduced relapse of CDI after administration of CSA13 was stopped. Levels of CSA13 in feces from mice given CSA13-Eudragit were significantly higher than those of mice given subcutaneous CSA13. Subcutaneous and oral CSA13 each significantly increased the abundance of Peptostreptococcaceae bacteria and reduced the abundance of C difficile in fecal samples of mice. When feces from mice with CDI and given CSA13 were fed to mice with CDI that had not received CSA13, the recipient mice had significantly increased rates of survival. CSA13 reduced fecal levels of inflammatory metabolites (endocannabinoids) and increased fecal levels of 4 protective metabolites (ie, citrulline, 3-aminoisobutyric acid, retinol, and ursodeoxycholic acid) in mice with CDI. Oral administration of these CSA13-dependent protective metabolites reduced the severity of CDI. CONCLUSIONS: In studies of mice, we found the CSA13-Eudragit formulation to be effective in eradicating CDI by modulating the intestinal microbiota and metabolites.


Asunto(s)
Antibacterianos/administración & dosificación , Clostridioides difficile/efectos de los fármacos , Enterocolitis Seudomembranosa/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Esteroides/administración & dosificación , Animales , Heces/microbiología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Vancomicina/administración & dosificación
17.
Am J Gastroenterol ; 114(7): 1034-1035, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31268916

RESUMEN

Preclinical and a few clinical studies have demonstrated the existence of a brain-gut-microbiome axis in which bacterial signals can modulate affective behavior, brain activity, and central gene expression profiles. The study by Wang et al. in this issue (Wang H, Braun C, Murphy EF, et al. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress. Am J Gastroenterol 2019;114:1152-62.) contributes to a growing body of literature demonstrating that probiotics that alter behavior in animal models-termed "psychobiotics"-can induce changes in human brain networks involved in emotional or cognitive responses. Although there are still many unknowns about the potential of existing probiotics to induce clinically relevant effects, these findings support continued investigation into interventions acting on the brain-gut-microbiome axis for affective, cognitive, and behavioral disorders.


Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Animales , Bacterias , Encéfalo , Voluntarios Sanos , Humanos
18.
Curr Gastroenterol Rep ; 21(10): 50, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444636

RESUMEN

PURPOSE OF REVIEW: The aim of this review is to summarize the recent literature on associations of small intestinal microbial and bile acid profiles with liver cirrhosis and its complications. RECENT FINDINGS: Recent studies into the duodenal microbiome of patients with cirrhosis have linked the microbiome to certain etiologies of chronic liver disease as well as complications of cirrhosis. In particular, microbial differences in the duodenum of patients with cirrhosis have been linked to the presence of hepatic encephalopathy and varices. While the fecal microbiome of patients with liver cirrhosis is well characterized, the small intestinal microbiome of cirrhotic patients is an active area of research. This review focuses on the current understanding of the small intestinal microbiome in human cirrhosis as well as future directions of the field.


Asunto(s)
Intestino Delgado/microbiología , Cirrosis Hepática/microbiología , Ácidos y Sales Biliares/fisiología , Microbioma Gastrointestinal/fisiología , Encefalopatía Hepática/microbiología , Humanos , Hipertensión Portal/microbiología , Cirrosis Hepática/metabolismo
19.
Hepatol Res ; 48(13): 1108-1117, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29923681

RESUMEN

AIM: Cirrhosis is a leading cause of death worldwide, yet there are no well-established risk stratifying tools for lethal complications, including hepatocellular carcinoma (HCC). Patients with liver cirrhosis undergo routine endoscopic surveillance, providing ready access to duodenal aspirate samples that could be a source for identifying novel biomarkers. The aim of this study was to characterize the microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis to assess the feasibility of developing biomarkers for HCC risk stratification. METHODS: Thirty patients with liver cirrhosis were enrolled in the Microbiome, Microbial Markers, and Liver Disease study between May 2015 and March 2017. Detailed clinical and epidemiological data were collected at baseline and at 6-monthly follow-up visits. Duodenal aspirate fluid was collected at baseline for microbial characterization using 16S ribosomal RNA sequencing and bile acid quantification using mass spectroscopy. RESULTS: Alcohol-related cirrhosis was associated with reductions in the Bacteroidetes phylum, particularly Prevotella (13-fold reduction), and expansion of Staphylococcus (13-fold increase), compared to hepatitis C virus-related cirrhosis. Participants with hepatic encephalopathy (HE) had less microbial diversity compared to patients without HE (P < 0.05), and were characterized by expansion of Mycobacterium (45-fold increase) and Gram-positive cocci including Granulicatella (3.1-fold increase), unclassified Planococcaceae (3.3-fold increase), and unclassified Streptococcaceae (4.5-fold increase). Non-Hispanic White patients had reduced microbial richness (P < 0.01) and diversity (P < 0.05), and increased levels of conjugated ursodeoxycholic acid (glycoursodeoxycholic acid and tauroursodeoxycholic acid, P < 0.05) compared to Hispanic patients. CONCLUSION: Microbial profiles of duodenal aspirates differed by cirrhosis etiology, HE, and Hispanic ethnicity.

20.
Gastroenterology ; 151(4): 724-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27492617

RESUMEN

BACKGROUND & AIMS: Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA). METHODS: Genotyping was performed in 10,523 IBD cases and 5726 non-IBD controls. There were 91,713 functional single-nucleotide polymorphism loci in coding regions analyzed. A novel identified association was replicated further in 2 independent cohorts. We further examined the association of the identified single-nucleotide polymorphism with microbiota from 338 mucosal lavage samples in the Mucosal Luminal Interface cohort measured using 16S sequencing. RESULTS: We identified an association between CD and a missense variant encoding alanine or threonine at position 391 in the zinc transporter solute carrier family 39, member 8 protein (SLC39A8 alanine 391 threonine, rs13107325) and replicated the association with CD in 2 replication cohorts (combined meta-analysis P = 5.55 × 10(-13)). This variant has been associated previously with distinct phenotypes including obesity, lipid levels, blood pressure, and schizophrenia. We subsequently determined that the CD risk allele was associated with altered colonic mucosal microbiome composition in both healthy controls (P = .009) and CD cases (P = .0009). Moreover, microbes depleted in healthy carriers strongly overlap with those reduced in CD patients (P = 9.24 × 10(-16)) and overweight individuals (P = 6.73 × 10(-16)). CONCLUSIONS: Our results suggest that an SLC39A8-dependent shift in the gut microbiome could explain its pleiotropic effects on multiple complex diseases including CD.


Asunto(s)
Proteínas de Transporte de Catión/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Microbioma Gastrointestinal/genética , Mutación Missense , Alelos , Estudios de Casos y Controles , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Femenino , Pleiotropía Genética , Genotipo , Humanos , Masculino , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA