Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(1): e1010255, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073387

RESUMEN

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Células Dendríticas/inmunología , Vacunas contra la Influenza/inmunología , Células de Langerhans/inmunología , Liposomas/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , COVID-19/inmunología , Ratones , Nanopartículas , Infecciones por Orthomyxoviridae/inmunología , SARS-CoV-2/inmunología
2.
Curr Opin Virol ; 48: 65-72, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33906124

RESUMEN

Vaccines based on mRNA-containing lipid nanoparticles (LNPs) pioneered by Katalin Karikó and Drew Weissman at the University of Pennsylvania are a promising new vaccine platform used by two of the leading vaccines against coronavirus disease in 2019 (COVID-19). However, there are many questions regarding their mechanism of action in humans that remain unanswered. Here we consider the immunological features of LNP components and off-target effects of the mRNA, both of which could increase the risk of side effects. We suggest ways to mitigate these potential risks by harnessing dendritic cell (DC) biology.


Asunto(s)
Células Dendríticas/inmunología , Inmunización/métodos , Lípidos , Nanopartículas , ARN Mensajero , Vacunas/clasificación , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Lípidos/administración & dosificación , Lípidos/inmunología , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/inmunología
3.
iScience ; 24(12): 103479, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34841223

RESUMEN

Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new platform used by two leading vaccines against COVID-19. Clinical trials and ongoing vaccinations present with varying degrees of protection levels and side effects. However, the drivers of the reported side effects remain poorly defined. Here we present evidence that Acuitas' LNPs used in preclinical nucleoside-modified mRNA vaccine studies are highly inflammatory in mice. Intradermal and intramuscular injection of these LNPs led to rapid and robust inflammatory responses, characterized by massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. The same dose of LNP delivered intranasally led to similar inflammatory responses in the lung and resulted in a high mortality rate, with mechanism unresolved. Thus, the mRNA-LNP platforms' potency in supporting the induction of adaptive immune responses and the observed side effects may stem from the LNPs' highly inflammatory nature.

4.
bioRxiv ; 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-33688649

RESUMEN

Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new platform used by two leading vaccines against coronavirus disease in 2019 (COVID-19). Clinical trials and ongoing vaccinations present with very high protection levels and varying degrees of side effects. However, the nature of the reported side effects remains poorly defined. Here we present evidence that LNPs used in many preclinical studies are highly inflammatory in mice. Intradermal injection of these LNPs led to rapid and robust inflammatory responses, characterized by massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. The same dose of LNP delivered intranasally led to similar inflammatory responses in the lung and resulted in a high mortality rate. In summary, here we show that the LNPs used for many preclinical studies are highly inflammatory. Thus, their potent adjuvant activity and reported superiority comparing to other adjuvants in supporting the induction of adaptive immune responses likely stem from their inflammatory nature. Furthermore, the preclinical LNPs are similar to the ones used for human vaccines, which could also explain the observed side effects in humans using this platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA