Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 475: 118-130, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33705737

RESUMEN

The lysine methyltransferase NSD3 is required for the expression of key neural crest transcription factors and the migration of neural crest cells. Nevertheless, a complete view of the genes dependent upon NSD3 for expression and the developmental processes impacted by NSD3 in the neural crest was lacking. We used RNA sequencing (RNA-seq) to profile transcripts differentially expressed after NSD3 knockdown in chick premigratory neural crest cells, identifying 674 genes. Gene Ontology and gene set enrichment analyses further support a requirement for NSD3 during neural crest development and show that NSD3 knockdown also upregulates ribosome biogenesis. To validate our results, we selected three genes not previously associated with neural crest development, Astrotactin 1 (Astn1), Dispatched 3 (Disp3), and Tropomyosin 1 (Tpm1). Using whole mount in situ hybridization, we show that premigratory neural crest cells express these genes and that NSD3 knockdown downregulates (Astn1 and Disp3) and upregulates (Tpm1) their expression, consistent with RNA-seq results. Altogether, this study identifies novel putative regulators of neural crest development and provides insight into the transcriptional consequences of NSD3 in the neural crest, with implications for cancer.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Cresta Neural/fisiología , Animales , Embrión de Pollo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , N-Metiltransferasa de Histona-Lisina/genética , Hibridación in Situ/métodos , Cresta Neural/embriología , Cresta Neural/metabolismo , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo
2.
J Neurosci ; 33(1): 273-85, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283340

RESUMEN

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.


Asunto(s)
Axones/metabolismo , Calpaína/metabolismo , Conos de Crecimiento/metabolismo , Canales Catiónicos TRPC/metabolismo , Talina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Femenino , Masculino , Neuronas/citología , Neuronas/metabolismo , Proteolisis , Seudópodos/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Canales Catiónicos TRPC/genética , Xenopus , Proteínas de Xenopus/genética
3.
J Vis Exp ; (184)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35815978

RESUMEN

During vertebrate development, neural crest cells (NCCs) migrate extensively and differentiate into various cell types that contribute to structures like the craniofacial skeleton and the peripheral nervous system. While it is critical to understand NCC migration in the context of a 3D embryo, isolating migratory cells in 2D culture facilitates visualization and functional characterization, complementing embryonic studies. The present protocol demonstrates a method for isolating chick cranial neural folds to generate primary NCC cultures. Migratory NCCs emerge from neural fold explants plated onto a fibronectin-coated substrate. This results in dispersed, adherent NCC populations that can be assessed by staining and quantitative morphological analyses. This simplified culture approach is highly adaptable and can be combined with other techniques. For example, NCC emigration and migratory behaviors can be evaluated by time-lapse imaging or functionally queried by including inhibitors or experimental manipulations of gene expression (e.g., DNA, morpholino, or CRISPR electroporation). Because of its versatility, this method provides a powerful system for investigating cranial NCC development.


Asunto(s)
Embrión de Mamíferos , Cresta Neural , Movimiento Celular/fisiología , Sistema Nervioso Periférico
4.
J Neurosci ; 26(21): 5656-64, 2006 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-16723522

RESUMEN

Ca2+ signals are known to be important regulators of neurite outgrowth and steering. Here we show that inhibiting Ca2+ influx through stretch-activated channels using various compounds, including a highly specific peptide isolated from Grammostola spatulata spider venom (GsMTx4), strongly accelerates the rate of neurite extension on diverse substrata and within the intact spinal cord. Consistent with the presence of stretch-activated channels, we show that Ca2+ influx is triggered by hypotonic solutions, which can be partially blocked by GsMTx4. Finally, chelating local, but not global, Ca2+ signals prevents the acceleration that is normally produced by GsMTx4. Blocking Ca2+ influx through other channel types has little or opposite effects, but release from intracellular stores is required for maximal acceleration. Together, our data suggest that Ca2+ functions at distinct microdomains in growth cones, with influx through mechanosensitive channels acting to inhibit outgrowth in opposition to influx through other plasma membrane channels and release from stores.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Mecanotransducción Celular/fisiología , Neuritas/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Líquido Intracelular/metabolismo , Neuritas/ultraestructura , Neuronas/fisiología , Médula Espinal/fisiología , Xenopus laevis
5.
Mol Biol Cell ; 25(25): 4174-86, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25318671

RESUMEN

Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration.


Asunto(s)
Proteínas Aviares/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Cresta Neural/citología , Animales , Tipificación del Cuerpo , Dominio Catalítico , Movimiento Celular , Embrión de Pollo , Metilación de ADN , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo
6.
PLoS One ; 7(10): e47794, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23094090

RESUMEN

The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/enzimología , Neurogénesis/genética , Animales , Ganglios Basales/embriología , Ganglios Basales/enzimología , Región Branquial/embriología , Región Branquial/enzimología , Diferenciación Celular , Movimiento Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Embrión de Mamíferos , Corazón/embriología , Integrasas/genética , Integrasas/metabolismo , Mesodermo/embriología , Mesodermo/enzimología , Ratones , Ratones Transgénicos , Mutación , Cresta Neural/embriología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Cráneo/embriología , Cráneo/enzimología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA