Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 3990-4003, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785514

RESUMEN

Retinoic acid (RA) regulates stemness and differentiation in human embryonic stem cells (ESCs). Ewing sarcoma (ES) is a pediatric tumor that may arise from the abnormal development of ESCs. Here we show that RA impairs the viability of SK-ES-1 ES cells and affects the cell cycle. Cells treated with RA showed increased levels of p21 and its encoding gene, CDKN1A. RA reduced mRNA and protein levels of SRY-box transcription factor 2 (SOX2) as well as mRNA levels of beta III Tubulin (TUBB3), whereas the levels of CD99 increased. Exposure to RA reduced the capability of SK-ES-1 to form tumorspheres with high expression of SOX2 and Nestin. Gene expression of CD99 and CDKN1A was reduced in ES tumors compared to non-tumoral tissue, whereas transcript levels of SOX2 were significantly higher in tumors. For NES and TUBB3, differences between tumors and control tissue did not reach statistical significance. Low expression of CD99 and NES, and high expression of SOX2, were significantly associated with a poorer patient prognosis indicated by shorter overall survival (OS). Our results indicate that RA may display rather complex modulatory effects on multiple target genes associated with the maintenance of stem cell's features versus their differentiation, cell cycle regulation, and patient prognosis in ES.

2.
Mol Cell Biochem ; 478(10): 2241-2255, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36637615

RESUMEN

Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias del Sistema Nervioso , Humanos , Niño , Epigenoma , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/patología , Neoplasias del Sistema Nervioso/genética , Neoplasias del Sistema Nervioso/patología
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894922

RESUMEN

Changes in epigenetic programming have been proposed as being key events in the initiation and progression of childhood cancers. HMT euchromatic histone lysine methyltransferase 2 (G9a, EHMT2), which is encoded by the G9a (Ehmt2) gene, as well as its related protein GLP, which is encoded by the GLP/Ehmt1 gene, participate in epigenetic regulation by contributing to a transcriptionally repressed chromatin state. G9a/GLP activation has been reported in several cancer types. Herein, we evaluated the role of G9a in two solid pediatric tumors: neuroblastoma (NB) and Ewing sarcoma (ES). Our results show that G9a/Ehmt2 and GLP/Ehmt1 expression is higher in tumors with poorer prognosis, including St4 International Neuroblastoma Staging System (INSS) stage, MYCN amplified NB, and metastatic ES. Importantly, higher G9a and GLP levels were associated with shorter patient overall survival (OS) in both NB and ES. Moreover, pharmacological inhibition of G9a/GLP reduced cell viability in NB and ES cells. These findings suggest that G9a and GLP are associated with more aggressive NB and ES tumors and should be further investigated as being epigenetic targets in pediatric solid cancers.


Asunto(s)
Neuroblastoma , Sarcoma de Ewing , Niño , Humanos , Supervivencia Celular/genética , Epigénesis Genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neuroblastoma/genética , Sarcoma de Ewing/genética
4.
Mol Cell Biochem ; 476(11): 4107-4116, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34292482

RESUMEN

The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , Neoplasias/metabolismo , ARN Largo no Codificante/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Carcinogénesis , Niño , Transición Epitelial-Mesenquimal , Humanos , Neoplasias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681949

RESUMEN

Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Antígenos de Histocompatibilidad , Humanos
6.
Genet Mol Biol ; 44(4): e20200475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34609442

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant cancer predisposition disorder caused by heterozygous mutations in TSC1 or TSC2 genes and characterized by mTORC1 hyperactivation. TSC-associated tumors develop after loss of heterozygosity mutations and their treatment involves the use of mTORC1 inhibitors. We aimed to evaluate cellular processes regulated by mTORC1 in TSC cells with different mutations before tumor development. Flow cytometry analyses were performed to evaluate cell viability, cell cycle and autophagy in non-tumor primary TSC cells with different heterozygous mutations and in control cells without TSC mutations, before and after treatment with rapamycin (mTORC1 inhibitor). We did not observe differences in cell viability and cell cycle between the cell groups. However, autophagy was reduced in mutated cells. After rapamycin treatment, mutated cells showed a significant increase in the autophagy process (p=0.039). We did not observe differences between cells with distinct TSC mutations. Our main finding is the alteration of autophagy in non-tumor TSC cells. Previous studies in literature found autophagy alterations in tumor TSC cells or knock-out animal models. We showed that autophagy could be an important mechanism that leads to TSC tumor formation in the haploinsufficiency state. This result could guide future studies in this field.

7.
Mol Biol Rep ; 47(9): 6817-6828, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32862352

RESUMEN

A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Inhibidores Enzimáticos/farmacología , Glioblastoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkB/metabolismo , Animales , Azepinas/farmacología , Benzamidas/farmacología , Neoplasias Encefálicas/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Clasificación del Tumor , Quinazolinas/farmacología , Receptor trkB/antagonistas & inhibidores , Receptor trkB/genética , Tirfostinos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Pediatr Hematol Oncol ; 37(2): 170-175, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31826690

RESUMEN

Histone deacetylase inhibitors (HDACis) are epigenetic agents that display antitumor activities in experimental medulloblastoma (MB). Fingolimod (FTY720), an immunosuppressant agent currently used in the treatment of multiple sclerosis, also has anticancer actions and can act as an HDACi. Here we examined whether fingolimod can inhibit human MB cell viability and survival, and if the effects are accompanied by increased histone acetylation. D283 and DAOY MB cells were treated with different doses of fingolimod. Cell viability was assessed by cell counting in a hemocytometer, and cell survival was analyzed with a colony formation assay. Histone H3 acetylation was measured with an enzyme-linked immunosorbent assay (ELISA). Fingolimod at 7.5 or 10 µM, but not at 5 µM, induced a significant reduction in cell viability in D283 and DAOY cultures, and similar results were observed for inhibition of cell survival. In both cell lines, fingolimod also led to a significant increase in the levels of acetylated H3. These findings provide preliminary evidence indicating that fingolimod induces antitumor activities in MB, possibly through a mechanism which increases H3 histone acetylation.


Asunto(s)
Clorhidrato de Fingolimod/uso terapéutico , Inmunosupresores/uso terapéutico , Meduloblastoma/tratamiento farmacológico , Acetilación , Clorhidrato de Fingolimod/farmacología , Humanos , Inmunosupresores/farmacología
9.
Childs Nerv Syst ; 32(1): 61-4, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26590027

RESUMEN

PURPOSE: Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. METHODS: D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. RESULTS: NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. CONCLUSION: Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Bombesina/análogos & derivados , Inhibidores de Histona Desacetilasas/farmacología , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/farmacología , Receptores de Bombesina/antagonistas & inhibidores , Análisis de Varianza , Antineoplásicos/farmacología , Bombesina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Meduloblastoma/patología
10.
J Mol Neurosci ; 74(2): 47, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662144

RESUMEN

Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients' clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (CEMIP and NCBP3). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Cerebelosas , Metilación de ADN , Meduloblastoma , Transcriptoma , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidad , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Biomarcadores de Tumor/genética , Masculino , Femenino , Pronóstico , Niño , Preescolar
11.
Neurochem Res ; 38(2): 371-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23179588

RESUMEN

Transplantation with olfactory ensheathing cells (OECs) has been adopted after several models of spinal cord injury (SCI) with the purpose of creating a favorable environment for the re-growth of injured axons. However, a consensus on the efficacy of this cellular transplantation has yet to be reached. In order to explore alternative parameters that could demonstrate the possible restorative properties of such grafts, the present study investigated the effects of olfactory lamina propria (OLP) transplantation on hyperreflexia and myelinated fiber regeneration in adult rats with complete spinal cord transection. The efficacy of OLP (graft containing OECs) and respiratory lamina propria (RLP, graft without OECs) was tested at different post-injury times (acutely, 2- and 4-week delayed), to establish the optimum period for transplantation. In the therapeutic windows used, OLP and RLP grafts produced no considerable improvements in withdrawal reflex responses or on the low-frequency dependent depression of H-reflex. Both lamina propria grafts produced comparable results for the myelinated fiber density and for the estimated total number of myelinated fibers at the lesion site, indicating that the delayed transplantation approach does not seem to limit the regenerative effects. However, animals transplanted with OLP 2 or 4 weeks after injury exhibit smaller myelin sheath thickness and myelinated fiber area and diameter at the lesion site compared to their respective RLP groups. Despite the ongoing clinical use of OECs, it is important to emphasize the need for more experimental studies to clarify the exact nature of the repair capacity of these grafts in the treatment of SCI.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Regeneración Nerviosa/fisiología , Mucosa Olfatoria/trasplante , Reflejo Anormal/fisiología , Traumatismos de la Médula Espinal/cirugía , Animales , Reflejo H/fisiología , Masculino , Membrana Mucosa/fisiología , Membrana Mucosa/trasplante , Mucosa Olfatoria/fisiología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Tejidos/métodos
12.
Childs Nerv Syst ; 29(12): 2145-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24092425

RESUMEN

PURPOSE: Medulloblastoma is the most common malignant childhood brain tumor for which the development of new molecularly targeted therapies is needed. Novel therapeutic targets under investigation include growth factor receptors. Here, we show that the combined inhibition of the epidermal growth factor receptor (EGFR) and neuromedin B receptor (NMBR, BB1) results in increased cell death in human medulloblastoma cell lines. METHODS: DAOY and D283 human medulloblastoma cells were treated with human recombinant neuromedin B (NMB, an NMBR agonist), the NMBR antagonist BIM-23127, the anti-EGFR monoclonal antibody cetuximab, or BIM-23127 combined with cetuximab. Cell death was examined with trypan blue cell counting. RESULTS: Both cell lines expressed mRNA for EGFR, NMB, and NMBR detected by reverse transcriptase polymerase chain reaction. Cetuximab at 10 µg/ml significantly reduced the number of DAOY cells, but did not affect D283 cells. NMB and BIM-23127 did not change cell number when used alone. However, cetuximab, at a dose that did not have an effect by itself, was able to reduce the number of DAOY cells when combined with BIM-23127. CONCLUSION: These results provide preliminary evidence that NMBR blockade can potentiate the antitumor effect of anti-EGFR therapy in medulloblastoma.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias Cerebelosas/patología , Receptores ErbB/antagonistas & inhibidores , Meduloblastoma/patología , Péptidos Cíclicos/administración & dosificación , Receptores de Bombesina/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cetuximab , Sinergismo Farmacológico , Humanos , Meduloblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Curr Stem Cell Res Ther ; 18(7): 926-936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35761483

RESUMEN

Resistance to chemotherapy poses a major challenge for cancer treatment. Reactivating a stem cell program resembling that seen in embryonic development can lead cancer cells to acquire a stem-cell phenotype characterized by expression of stemness genes, pluripotency, high self-renewal ability, and tumor-initiating capability. These cancer stem cells (CSCs) are usually resistant to anticancer drugs and are likely involved in treatment failure in many cancer types. Ewing sarcoma (ES) is a pediatric cancer type typically resulting from a typical genetic alteration affecting bone or soft tissues. Despite advances in treatment, survival prognostic remains poor for patients with refractory or recurrent disease. Here, we review the increasing evidence indicating that ES tumors contain a CSC subpopulation expressing stem cell genes, including BM1, OCT3/4, NANOG, and SOX2, that plays a role in resistance to drug treatment, and current experimental strategies that successfully counteract chemoresistance mediated by CSCs in ES.


Asunto(s)
Antineoplásicos , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células Madre Neoplásicas/metabolismo
14.
FEBS Lett ; 597(19): 2446-2460, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597508

RESUMEN

Ewing sarcoma (ES) is a highly aggressive pediatric tumor driven by the RNA-binding protein EWS (EWS)/friend leukemia integration 1 transcription factor (FLI1) chimeric transcription factor, which is involved in epithelial-mesenchymal transition (EMT). EMT stabilizes a hybrid cell state, boosting metastatic potential and drug resistance. Nevertheless, the mechanisms underlying the maintenance of this hybrid phenotype in ES remain elusive. Our study proposes a logical EMT model for ES, highlighting zinc finger E-box-binding homeobox 2 (ZEB2), miR-145, and miR-200 circuits that maintain hybrid states. The model aligns with experimental findings and reveals a previously unknown circuit supporting the mesenchymal phenotype. These insights emphasize the role of ZEB2 in the maintenance of the hybrid state in ES.

15.
Neuromolecular Med ; 25(1): 64-74, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35716340

RESUMEN

Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Niño , Adolescente , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Cerebelo , Inhibidores de Histona Desacetilasas/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
16.
Neuromolecular Med ; 25(4): 573-585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37740824

RESUMEN

Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 µM) and D283 (IC50 = 334 µM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Calidad de Vida , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular , Neoplasias Cerebelosas/tratamiento farmacológico , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Línea Celular Tumoral
17.
Neurol Sci ; 33(5): 1137-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22231471

RESUMEN

Astrocytic changes have been demonstrated in several neurodegenerative diseases, showing that these cells play an important role in functional recovery/maintenance against brain damage. Physical exercise is known to contribute to this process; however, the cellular mechanisms involved are not fully understood. This study investigated the effects of physical exercise on motor deficits and the expression of glial fibrillary acidic protein (GFAP) in a model of Parkinson's disease (PD). Rats were divided into four groups: sham sedentary (SS) and sham trained (ST); lesioned sedentary (LS) and lesioned trained (LT). 6-OHDA was infused unilaterally into the medial forebrain bundle. Behavioral tasks were applied to evaluate motor abilities. Tyrosine hydroxylase (TH-in substantia nigra) and GFAP (in striatum) immunoreactivities (ir) were semi-quantified using optical density. The animals submitted to treadmill training completed fewer pharmacological-induced rotations when compared with sedentary animals and they also showed ameliorated motor impairments. Interestingly, although no change in TH-ir, the exercise led to restored striatal GFAP expression in the LT group while there was no effect in the ST group. This study is the first study to show data indicating the recovery of GFAP expression post-exercise in this model and further research is necessary to determine the precise action mechanisms of exercise on astrocytes in the PD.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Actividad Motora/fisiología , Condicionamiento Físico Animal , Adrenérgicos/toxicidad , Animales , Cuerpo Estriado/fisiopatología , Inmunohistoquímica , Masculino , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Wistar
18.
Neuromolecular Med ; 24(4): 392-398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35113321

RESUMEN

Changes in epigenetic programming are associated with cancer development during childhood. Components of the epigenetic machinery involved in normal embryonic development and hijacked by pediatric cancers include enzymes mediating post-translational modifications of DNA and histones that regulate chromatin structure, such as histone methyltransferases (HMTs). Overexpression of the HMT G9a (euchromatic histone lysine methyltransferase 2, EHMT2) has been described in several cancer types. Medulloblastoma (MB), the main type of malignant brain tumor afflicting children, is currently classified into four molecular subgroups. Here, we show that expression level of the G9a/Ehmt2 gene is higher in MB tumors belonging to the SHH, Group 3, and Group 4 subgroups, compared to Wnt tumors. Remarkably, high G9a expression was significantly associated with shorter overall survival in MB patients. We also present evidence that G9a inhibition dose-dependently reduces MB cell viability. Our findings suggest that higher transcription of G9a may be a predictor of poor prognosis in patients with SHH MB, and that inhibiting G9a activity can display antitumor effects in MB.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Meduloblastoma/genética , Pronóstico , Neoplasias Cerebelosas/genética , Biomarcadores , Proteínas Hedgehog/genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo
19.
Neurochem Res ; 36(6): 1046-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21424738

RESUMEN

Several studies have shown that treadmill training improves neurological outcomes and promotes plasticity in lumbar spinal cord of spinal animals. The morphological and biochemical mechanisms underlying these phenomena remain unclear. The purpose of this study was to provide evidence of activity-dependent plasticity in spinal cord segment (L5) below a complete spinal cord transection (SCT) at T8-9 in rats in which the lower spinal cord segments have been fully separated from supraspinal control and that subsequently underwent treadmill step training. Five days after SCT, spinal animals started a step-training program on a treadmill with partial body weight support and manual step help. Hindlimb movements were evaluated over time and scored on the basis of the open-field BBB scale and were significantly improved at post-injury weeks 8 and 10 in trained spinal animals. Treadmill training also showed normalization of withdrawal reflex in trained spinal animals, which was significantly different from the untrained animals at post-injury weeks 8 and 10. Additionally, compared to controls, spinal rats had alpha motoneuronal soma size atrophy and reduced synaptophysin protein expression and Na(+), K(+)-ATPase activity in lumbar spinal cord. Step-trained rats had motoneuronal soma size, synaptophysin expression and Na(+), K(+)-ATPase activity similar to control animals. These findings suggest that treadmill step training can promote activity-dependent neural plasticity in lumbar spinal cord, which may lead to neurological improvements without supraspinal descending control after complete spinal cord injury.


Asunto(s)
Plasticidad Neuronal , Traumatismos de la Médula Espinal/fisiopatología , Sinapsis/fisiología , Caminata , Animales , Western Blotting , Masculino , Ratas , Ratas Wistar
20.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924679

RESUMEN

Ewing Sarcoma (ES) is a rare malignant tumor occurring most frequently in adolescents and young adults. The ES hallmark is a chromosomal translocation between the chromosomes 11 and 22 that results in an aberrant transcription factor (TF) through the fusion of genes from the FET and ETS families, commonly EWSR1 and FLI1. The regulatory mechanisms behind the ES transcriptional alterations remain poorly understood. Here, we reconstruct the ES regulatory network using public available transcriptional data. Seven TFs were identified as potential MRs and clustered into two groups: one composed by PAX7 and RUNX3, and another composed by ARNT2, CREB3L1, GLI3, MEF2C, and PBX3. The MRs within each cluster act as reciprocal agonists regarding the regulation of shared genes, regulon activity, and implications in clinical outcome, while the clusters counteract each other. The regulons of all the seven MRs were differentially methylated. PAX7 and RUNX3 regulon activity were associated with good prognosis while ARNT2, CREB3L1, GLI3, and PBX3 were associated with bad prognosis. PAX7 and RUNX3 appear as highly expressed in ES biopsies and ES cell lines. This work contributes to the understanding of the ES regulome, identifying candidate MRs, analyzing their methilome and pointing to potential prognostic factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA