Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409259

RESUMEN

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Asunto(s)
Astrocitos , Esclerosis Múltiple , Animales , Humanos , Ratones , Antiinflamatorios , Modelos Animales de Enfermedad , Epigénesis Genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Inflamación , Proteómica
2.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662171

RESUMEN

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Asunto(s)
Encéfalo/inmunología , Enfermedades Desmielinizantes/inmunología , Macrófagos/patología , Médula Espinal/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/patología , Factor de Crecimiento Transformador beta/metabolismo
3.
Acta Neuropathol ; 147(1): 82, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722375

RESUMEN

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Asunto(s)
Envejecimiento , Senescencia Celular , Esclerosis Múltiple , Oligodendroglía , Humanos , Oligodendroglía/patología , Oligodendroglía/metabolismo , Senescencia Celular/fisiología , Envejecimiento/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Adulto , Anciano , Persona de Mediana Edad , Masculino , Femenino , Adulto Joven , Inflamación/patología , Inflamación/metabolismo , Sustancia Blanca/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879606

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.


Asunto(s)
Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Transcriptoma/genética , Adulto , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Leucocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/sangre , MicroARNs/líquido cefalorraquídeo , MicroARNs/genética , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Recurrente-Remitente/genética , Recurrencia Local de Neoplasia/metabolismo , ARN Pequeño no Traducido/sangre , ARN Pequeño no Traducido/líquido cefalorraquídeo , ARN Pequeño no Traducido/genética
5.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628757

RESUMEN

Epigenetic mechanisms can regulate how DNA is expressed independently of sequence and are known to be associated with various diseases. Among those epigenetic mechanisms, DNA methylation (DNAm) is influenced by genotype and the environment, making it an important molecular interface for studying disease etiology and progression. In this study, we examined the whole blood DNA methylation profiles of a large group of people with (pw) multiple sclerosis (MS) compared to those of controls. We reveal that methylation differences in pwMS occur independently of known genetic risk loci and show that they more strongly differentiate disease (AUC = 0.85, 95% CI 0.82-0.89, p = 1.22 × 10-29) than known genetic risk loci (AUC = 0.72, 95% CI: 0.66-0.76, p = 9.07 × 10-17). We also show that methylation differences in MS occur predominantly in B cells and monocytes and indicate the involvement of cell-specific biological pathways. Overall, this study comprehensively characterizes the immune cell-specific epigenetic architecture of MS.


Asunto(s)
Monocitos , Esclerosis Múltiple , Humanos , Metilación de ADN , Esclerosis Múltiple/genética , Linfocitos B , Epigénesis Genética
6.
Proc Natl Acad Sci U S A ; 116(19): 9443-9452, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019085

RESUMEN

An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-ß signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed "wound and keratinocyte migration-associated lncRNA 1" (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.


Asunto(s)
Movimiento Celular , Queratinocitos/metabolismo , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Piel/metabolismo , Cicatrización de Heridas , Heridas y Lesiones/metabolismo , Enfermedad Crónica , Factor de Transcripción E2F1/metabolismo , Regulación de la Expresión Génica , Humanos , Queratinocitos/patología , Piel/patología , Factor de Crecimiento Transformador beta/metabolismo , Heridas y Lesiones/patología
7.
BMC Genomics ; 22(1): 631, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461822

RESUMEN

BACKGROUND: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. RESULT: We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10- 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. CONCLUSIONS: We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Epigenómica , Redes Reguladoras de Genes , Humanos , Esclerosis Múltiple/genética , Factores de Riesgo
8.
Mult Scler ; 27(7): 1014-1026, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32729352

RESUMEN

BACKGROUND: Despite compelling evidence that cigarette smoking impacts the risk of developing multiple sclerosis (MS), little is known about smoking-associated changes in the primary exposed lung cells of patients. OBJECTIVES: We aimed to examine molecular changes occurring in bronchoalveolar lavage (BAL) cells from MS patients in relation to smoking and in comparison to healthy controls (HCs). METHODS: We profiled DNA methylation in BAL cells from female MS (n = 17) and HC (n = 22) individuals, using Illumina Infinium EPIC and performed RNA-sequencing in non-smokers. RESULTS: The most prominent changes were found in relation to smoking, with 1376 CpG sites (adjusted P < 0.05) differing between MS smokers and non-smokers. Approximately 30% of the affected genes overlapped with smoking-associated changes in HC, leading to a strong common smoking signature in both MS and HC after gene ontology analysis. Smoking in MS patients resulted in additional discrete changes related to neuronal processes. Methylome and transcriptome analyses in non-smokers suggest that BAL cells from MS patients display very subtle (not reaching adjusted P < 0.05) but concordant changes in genes connected to reduced transcriptional/translational processes and enhanced cellular motility. CONCLUSIONS: Our study provides insights into the impact of smoking on lung inflammation and immunopathogenesis of MS.


Asunto(s)
Epigenoma , Esclerosis Múltiple , Metilación de ADN , Femenino , Humanos , Esclerosis Múltiple/genética , Fumar/efectos adversos , Transcriptoma
9.
J Immunol ; 203(4): 888-898, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31292217

RESUMEN

Genome-wide association studies have mapped the specific sequence variants that predispose for multiple sclerosis (MS). The pathogenic mechanisms that underlie these associations could be leveraged to develop safer and more effective MS treatments but are still poorly understood. In this article, we study the genetic risk variant rs17066096 and the candidate gene that encodes IL-22 binding protein (IL-22BP), an antagonist molecule of the cytokine IL-22. We show that monocytes from carriers of the risk genotype of rs17066096 express more IL-22BP in vitro and cerebrospinal fluid levels of IL-22BP correlate with MS lesion load on magnetic resonance imaging. We confirm the pathogenicity of IL-22BP in both rat and mouse models of MS and go on to suggest a pathogenic mechanism involving lack of IL-22-mediated inhibition of T cell-derived IFN-γ expression. Our results demonstrate a pathogenic role of IL-22BP in three species with a potential mechanism of action involving T cell polarization, suggesting a therapeutic potential of IL-22 in the context of MS.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Receptores de Interleucina/genética , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Genotipo , Humanos , Activación de Linfocitos/inmunología , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Polimorfismo de Nucleótido Simple , Ratas , Linfocitos T/inmunología
10.
BMC Bioinformatics ; 21(1): 443, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028195

RESUMEN

BACKGROUND: Gene-set analysis tools, which make use of curated sets of molecules grouped based on their shared functions, aim to identify which gene-sets are over-represented in the set of features that have been associated with a given trait of interest. Such tools are frequently used in gene-centric approaches derived from RNA-sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. Gene-set analysis tools return, as a result, a list of significant gene-sets. However, while these results are useful for the researcher in the identification of major biological insights, they may be complex to interpret because many gene-sets have largely overlapping gene contents. Additionally, in many cases the result of gene-set analysis consists of a large number of gene-sets making it complicated to identify the major biological insights. RESULTS: We present GeneSetCluster, a novel approach which allows clustering of identified gene-sets, from one or multiple experiments and/or tools, based on shared genes. GeneSetCluster calculates a distance score based on overlapping gene content, which is then used to cluster them together and as a result, GeneSetCluster identifies groups of gene-sets with similar gene-set definitions (i.e. gene content). These groups of gene-sets can aid the researcher to focus on such groups for biological interpretations. CONCLUSIONS: GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https://github.com/TranslationalBioinformaticsUnit.


Asunto(s)
Interfaz Usuario-Computador , Línea Celular , Análisis por Conglomerados , Metilación de ADN/efectos de los fármacos , Minería de Datos , Dimetilfumarato/farmacología , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Especies Reactivas de Oxígeno/metabolismo
11.
Hum Mol Genet ; 27(5): 912-928, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29325110

RESUMEN

Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as multiple sclerosis (MS). As a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells from MS patients (n = 145) to identify eQTLs in regions centered on 109 MS risk single nucleotide polymorphisms and 7 associated human leukocyte antigen variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalized with the disease association signal. As many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major peripheral blood mononuclear cell-derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared with non-inflammatory neurological diseases patients. In addition, we found two single nucleotide polymorphisms to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.


Asunto(s)
Esclerosis Múltiple/genética , Sitios de Carácter Cuantitativo , Estudios de Cohortes , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Humanos , Interferón gamma/farmacología , Leucocitos Mononucleares/fisiología , Desequilibrio de Ligamiento , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
12.
Eur J Immunol ; 49(2): 313-322, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30307034

RESUMEN

Systemic autoimmune diseases are characterized by the overexpression of type I IFN stimulated genes, and accumulating evidence indicate a role for type I IFNs in these diseases. However, the underlying mechanisms for this are still poorly understood. To explore the role of type I IFN regulated miRNAs in systemic autoimmune disease, we characterized cellular expression of miRNAs during both acute and chronic type I IFN responses. We identified a T cell-specific reduction of miR-31-5p levels, both after intramuscular injection of IFNß and in patients with Sjögren's syndrome (SjS). To interrogate the role of miR-31-51p in T cells we transfected human CD4+ T cells with a miR-31-5p inhibitor and performed metabolic measurements. This identified an increase in basal levels of glucose metabolism after inhibition of miR-31-5p. Furthermore, treatment with IFN-α also increased the basal levels of human CD4+ T-cell metabolism. In all, our results suggest that reduced levels of miR-31-5p in T cells of SjS patients support autoimmune T-cell responses during chronic type I IFN exposure.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Metabolismo Energético/inmunología , MicroARNs/inmunología , Síndrome de Sjögren/inmunología , Linfocitos T CD4-Positivos/patología , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Interferón-alfa/inmunología , Interferón-alfa/farmacología , Interferón beta/inmunología , Interferón beta/farmacología , Masculino , Síndrome de Sjögren/patología
13.
Proc Natl Acad Sci U S A ; 114(9): E1678-E1687, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28196884

RESUMEN

Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Vitamina D/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Genómica/métodos , Activación de Linfocitos/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Ratas , Transducción de Señal/genética , Transducción de Señal/inmunología , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
J Autoimmun ; 101: 17-25, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31014917

RESUMEN

Multiple sclerosis (MS) is a leading cause of progressive disability among young adults caused by inflammation, demyelination and axonal loss in the central nervous system. Small non-coding RNAs (sncRNAs) are important regulators of various biological processes and could therefore play important roles in MS. Over the past decade, a large number of studies investigated sncRNAs in MS patients, focusing primarily on microRNAs (miRNAs). Overwhelming 500 miRNAs have been reported as dysregulated in MS. Nevertheless, owing to a large heterogeneity between studies it is challenging to evaluate the reproducibility of findings, in turn hampering our knowledge about the functional roles of miRNAs in disease. We systematically searched main databases and evaluated results from all studies that examined sncRNAs in MS to date (n = 61) and provided a detailed overview of experimental design and findings of these studies. We focused on the mechanisms of the most dysregulated sncRNAs and used predicted targets of the most dysregulated sncRNAs as input for functional enrichment analysis to highlight affected pathways. The prime affected pathway was TGF-ß signaling. This multifunctional cytokine is important in the differentiation and function of T helper type 17 (Th17) and regulatory T (Treg) cells, with opposing functions in the disease. Recent studies demonstrate the importance of miRNAs in controlling the balance between Th17/Th1 cells and Tregs and, importantly, the potential to exploit this paradigm for therapeutic purposes. Additionally, some of the discussed miRNAs could potentially serve as biomarkers of disease. In order to assist researchers in evaluating the evidence of a particular sncRNA in the pathogenesis of MS, we provide a detailed overview of experimental design and findings of these studies to date.


Asunto(s)
Biomarcadores , Predisposición Genética a la Enfermedad , Terapia Genética , Terapia Molecular Dirigida , Esclerosis Múltiple/genética , Esclerosis Múltiple/terapia , ARN Pequeño no Traducido , Animales , MicroARN Circulante , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Humanos , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Esclerosis Múltiple/diagnóstico , Interferencia de ARN
15.
Mol Ther ; 26(4): 1040-1055, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29503197

RESUMEN

miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , MicroARNs/genética , Animales , Apoptosis/genética , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Genotipo , Humanos , Inmunohistoquímica , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , MicroARNs/administración & dosificación , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
16.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28766461

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Regulación de la Expresión Génica/fisiología , MicroARNs/genética , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Recurrente-Remitente/genética , Adulto , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Regulación hacia Arriba
17.
BMC Bioinformatics ; 18(1): 486, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141580

RESUMEN

BACKGROUND: The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. RESULTS: In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. CONCLUSIONS: Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.


Asunto(s)
Metilación de ADN , Ratones/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Islas de CpG , Genómica , Humanos , Reproducibilidad de los Resultados
18.
Physiol Genomics ; 49(9): 447-461, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754822

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.


Asunto(s)
Investigación Biomédica , Epigénesis Genética , Esclerosis Múltiple/genética , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Humanos
19.
PLoS Genet ; 10(3): e1004265, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24676147

RESUMEN

Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37-54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting-like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Epigénesis Genética , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Alelos , Animales , Proteínas de Unión al Calcio , Cromosomas Humanos Par 6/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Ratas , Factores de Riesgo
20.
PLoS Genet ; 10(2): e1004151, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586191

RESUMEN

Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Complejo Mayor de Histocompatibilidad/genética , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Alelos , Animales , Presentación de Antígeno , Diferenciación Celular/genética , Linaje de la Célula , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Ratas , Recombinación Genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA