Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Inorg Chem ; 63(4): 1858-1866, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38226604

RESUMEN

The electronic structure and photophysics of two low spin metallocenes, decamethylmanganocene (MnCp*2) and decamethylrhenocene (ReCp*2), were investigated to probe their promise as photoredox reagents. Computational studies support the assignment of 2E2 ground state configurations and low energy ligand-to-metal charge transfer transitions for both complexes. Weak emission is observed at room temperature for ReCp*2 with τ = 1.8 ns in pentane, whereas MnCp*2 is not emissive. Calculation of the excited state reduction potentials for both metallocenes reveal their potential potency as excited state reductants (E°'([MnCp*2]+/0*) = -3.38 V and E°'([ReCp*2]+/0*) = -2.61 V vs Fc+/0). Comparatively, both complexes exhibit mild potentials for photo-oxidative processes (E°'([MnCp*2]0*/-) = -0.18 V and E°'([ReCp*2]0*/-) = -0.20 V vs Fc+/0). These results showcase the rich electronic structure of low spin d5 metallocenes and their promise as excited state reductants.

2.
Inorg Chem ; 62(17): 6576-6585, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652699

RESUMEN

A metal-to-ligand charge transfer with mixed intraligand character is observed for the rhenium hexakisarylisocyanide complex [Re(CNAr)6]PF6 (CNAr = 2,6-dimethylphenylisocyanide, λmax = 300 nm). Upon oxidation to [Re(CNAr)6](PF6)2, the dominant low energy optical transition is a ligand-to-metal charge transfer (LMCT) mixed with intraligand transitions (λmax = 650 nm). TD-DFT was used to identify the participating ligand-based orbitals in the LMCT transition, revealing that the majority of the donor orbital is based on the aryl ring (85%) as opposed to the CN bond (14%). For both [Re(CNAr)6]+ and [Re(CNAr)6]2+, structural characterization by X-ray diffraction reveals deviations from Oh geometry at the central Re ion, with larger reduction in symmetry observed for Re(II). For [Re(CNAr)6]+, these structural changes lead to a broadening of the strong ν(C≡N) stretch (2065 cm-1), as the degeneracy of the T1u IR-active mode is broken. Furthermore, a shoulder is observed for this ν(C≡N) stretch, resulting from deviation of the C-N-Ar bond from linearity. By contrast, [Re(CNAr)6]2+ has two weak bands in the ν(C≡N) region (2065 and 2121 cm-1). DFT calculations indicate that reduction of symmetry at the central rhenium ion manifests in the decrease in intensity and the observed split of the ν(C≡N) band. Stability of both complexes are limited by light-induced decomposition where Re(I) dissociates a isocyanide ligand upon irradiation and Re(II) absorbance decays under ambient light. These data provide new insights to the electronic structure of [Re(CNAr)6]2+, enhancing our understanding of LMCT excited states and the versatility of isocyanide ligands.

3.
Inorg Chem ; 62(23): 9146-9157, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37228171

RESUMEN

A series of dinuclear molecular copper complexes were prepared and used to model the binding and Lewis acid stabilization of CO in heterogeneous copper CO2 reduction electrocatalysts. Experimental studies (including measurement of rate and equilibrium constants) and electronic structure calculations suggest that the key kinetic barrier for CO binding may be a σ-interaction between CuI and the incoming CO ligand. The rate of CO coordination can be increased upon the addition of Lewis acids or electron-withdrawing substituents on the ligand backbone. Conversely, Keq for CO coordination can be increased by adding electron density to the metal centers of the compound, consistent with stronger π-backbonding. Finally, the electrochemically measured kinetic results were mapped onto an electrochemical zone diagram to illustrate how these system changes enabled access to each zone.

4.
J Am Chem Soc ; 144(39): 17824-17831, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36154168

RESUMEN

We report an iron-based graphite-conjugated electrocatalyst (GCC-FeDIM) that combines the well-defined nature of homogeneous molecular electrocatalysts with the robustness of a heterogeneous electrode. A suite of spectroscopic methods, supported by the results of DFT calculations, reveals that the electrode surface is functionalized by high spin (S = 5/2) Fe(III) ions in an FeN4Cl2 coordination environment. The chloride ions are hydrolyzed in aqueous solution, with the resulting cyclic voltammogram revealing a Gaussian-shaped wave assigned to 1H+/1e- reduction of surface Fe(III)-OH surface. A catalytic wave is observed in the presence of NO3-, with an onset potential of -1.1 V vs SCE. At pH 6.0, GCC-FeDIM rapidly reduces NO3- to ammonium and nitrite with 88 and 6% Faradaic efficiency, respectively. Mechanistic studies, including in situ X-ray absorption spectroscopy, suggest that electrocatalytic NO3- reduction involves an iron nitrosyl intermediate. The Fe-N bond length (1.65 Å) is similar to that observed in {Fe(NO)}6 complexes, which is supported by the results of DFT calculations.


Asunto(s)
Compuestos de Amonio , Grafito , Cloruros , Compuestos Férricos/química , Hierro/química , Modelos Moleculares , Nitratos , Nitritos , Óxidos de Nitrógeno
5.
Photosynth Res ; 151(2): 155-161, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34258679

RESUMEN

The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+.


Asunto(s)
Compuestos Organometálicos , Renio , Ligandos , Compuestos Organometálicos/química , Teoría Cuántica , Renio/química , Análisis Espectral
6.
Inorg Chem ; 61(47): 18850-18860, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36367743

RESUMEN

Over the past decade, iron(II) polypyridines have gained a lot of attention as potential chromophores and sensitizers due to the low cost and high abundance of iron. Unfortunately, most iron(II) polypyridines are poor chromophores since their initially excited, photoactive metal-to-ligand charge transfer (MLCT) states quickly decay into non-photoactive metal-centered (MC) states. Many strategies to increase their lifetime have been pursued, built mainly around increasing the ligand field strength of these complexes and thus destabilizing the MC states. In this work, we aim to design a new class of Fe(II) complexes by stabilizing the energies of their MLCT states. To this end, we employ density functional theory (DFT) and time-dependent DFT to investigate a series of Fe(II) complexes, [Fe(L/X)2,4(N^N)]2+/2- where L/X represents either cyanide, isocyanide, or bipyridine ligands and N̂N stands for bidentate-extended π-conjugated ligands derived from the bipyridine. The L/X ligands tune the energetics of the Fe-based t2g molecular orbitals, while the amount of π-conjugation on the N^N ligand impacts the energies of its π and π* orbitals, thus tuning the energetics of the MLCT and the ligand-centered (LC) states. Overall, our results suggest that the use of N^N ligands with the extended π-conjugation is a viable strategy to tune the relative energies of MLCT, LC, and MC states.

7.
Inorg Chem ; 61(33): 12998-13006, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35948065

RESUMEN

This work reports a combined experimental and computational study of the activation of an otherwise catalytically inactive cobalt complex, [Co(TIM)Br2]+, for aqueous nitrite reduction. The presence of phosphate buffer leads to efficient electrocatalysis, with rapid reduction to ammonium occurring close to the thermodynamic potential and with high Faradaic efficiency. At neutral pH, increasing buffer concentrations increase catalytic current while simultaneously decreasing overpotential, although high concentrations have an inhibitory effect. Controlled potential electrolysis and rotating ring-disk electrode experiments indicate that ammonium is directly produced from nitrite by [Co(TIM)Br2]+, along with hydroxylamine. Mechanistic investigations implicate a vital role for the phosphate buffer, specifically as a proton shuttle, although high buffer concentrations inhibit catalysis. These results indicate a role for buffer in the design of electrocatalysts for nitrogen oxide conversion.


Asunto(s)
Compuestos de Amonio , Cobalto , Nitritos , Oxidación-Reducción , Fosfatos
8.
Inorg Chem ; 61(47): 18842-18849, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36375136

RESUMEN

We have prepared a series of complexes of the type [IrIII(ppy)2(L]n+ complexes (1-4), where ppy is a substituted 2-phenylpyridine and L is a chelating phosphine thioether ligand. The parent complex (1) comprises an unsubstituted phenylpyridine ligand, whereas complex 2 contains a nitro substituent on the pyridine ring, complex 3 features a diphenylamine group on the phenyl ring, and 4 has both nitro and diphenylamine groups. Crystallographic, 1H NMR, and elemental analysis data are consistent with each of the chemical formulae. DFT (density functional theory) computational results show a complicated electronic structure with contributions from Ir, ppy, and the PS ligand. Ultrafast pump-probe data show strong contributions from the phenylpyridine moieties as well as strong panchromatic excited state absorption transitions. The data show that nitro and/or diphenylamine substituents dominate the spectroscopy of this series of compounds.

9.
Phys Chem Chem Phys ; 23(35): 19547-19557, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524324

RESUMEN

Molecular dynamics simulations often classically evolve the nuclear geometry on adiabatic potential energy surfaces (PESs), punctuated by random hops between energy levels in regions of strong coupling, in an algorithm known as surface hopping. However, the computational expense of integrating the geometry on a full-dimensional PES and computing the required couplings can quickly become prohibitive as the number of atoms increases. In this work, we describe a method for surface hopping that uses only important reaction coordinates, performs all expensive evaluations of the true PESs and couplings only once before simulating dynamics (offline), and then queries the stored values during the surface hopping simulation (online). Our Python codes are freely available on GitHub. Using photodissociation of azomethane as a test case, this method is able to reproduce experimental results that have thus far eluded ab initio surface hopping studies.

10.
Phys Chem Chem Phys ; 23(36): 20583-20597, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34505848

RESUMEN

Small molecule organic dyes have many potential uses in medicine, textiles, forensics, and light-harvesting technology. Being able to computationally predict the spectroscopic properties of these dyes could greatly expedite screening efforts, saving time and materials. Time-dependent density functional theory (TD-DFT) has been shown to be a good tool for this in many instances, but characterizing electronic excitations with charge-transfer (CT) character has historically been challenging and can be highly sensitive to the chosen exchange-correlation functional. Here we present a combined experimental and computational study of the excited-state electronic structure of twenty organic dyes obtained from the Max Weaver Dye Library at NCSU. Results of UV-vis spectra calculations on these dyes with six different exchange-correlation functionals, BP86, B3LYP, PBE0, M06, BH and HLYP, and CAM-B3LYP, were compared against their measured UV-vis spectra. It was found that hybrid functionals with modest amounts (20-30%) of included Hartree-Fock exchange are the most effective at matching the experimentally determined λmax. The interplay between the observed error, the functional chosen, and the degree of CT was analyzed by quantifying the CT character of λmax using four orbital and density-based metrics, Λ, Δr, SC and DCT, as well as the change in the dipole moment, Δµ. The results showed that the relationship between CT character and the functional dependence of error is not straightforward, with the observed behavior being dependent both on how CT was quantified and the functional groups present in the molecules themselves. It is concluded that this may be a result of the examined excitations having intermediate CT character. Ultimately it was found that the nature of the molecular "family" influenced how a given functional behaved as a function of CT character, with only two of the examined CT quantification methods, Δr and DCT, showing consistent behavior between the different molecular families. This suggests that further work needs to be done to ensure that currently used CT quantification methods show the same general trends across large sets of multiple dye families.

11.
J Phys Chem A ; 125(45): 9725-9735, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730973

RESUMEN

The concept of a potential energy surface (PES) is one of the most important concepts in modern chemistry. A PES represents the relationship between the chemical system's energy and its geometry (i.e., atom positions) and can provide useful information about the system's chemical properties and reactivity. Construction of accurate PESs with high-level theoretical methodologies, such as density functional theory, is still challenging due to a steep increase in the computational cost with the increase of the system size. Thus, over the past few decades, many different mathematical approaches have been applied to the problem of the cost-efficient PES construction. This article serves as a short overview of interpolative methods for the PES construction, including global polynomial interpolation, trigonometric interpolation, modified Shepard interpolation, interpolative moving least-squares, and the automated PES construction derived from these.

12.
Chemistry ; 26(43): 9547-9555, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32189384

RESUMEN

Dimeric [CrL]2 , where L is the conjugate base of bis-pyrazolyl pyridine, is evaluated for its ability to undergo inner sphere and outer sphere redox chemistry. It reacts with Cp2 Fe+ to give [Cr4 (HL)4 (µ4 -O)]2+ , still containing divalent Cr. Reduction (KC8 ) of [CrL]2 by two electrons gives [K2 (THF)3 Cr3 L3 (µ3 -O)], and by four electrons gives [K4 (THF)10 Cr2 L2 (µ-O)], each of which has scavenged (hydr)oxide from glass surface because of the electrophilicity of the underligated Cr. [K4 (THF)10 Cr2 L2 (µ-O)], is shown by comprehensive DFT calculations and analysis of intra-ligand bond lengths to contain a pyridyl radical L3- and CrII , illustrating that this pincer is proton-responsive, redox active, and a versatile donor to associated K+ ions here. The K+ electrophiles interact with electron-rich oxo, but do not significantly (>5 kcal mol-1 ) alter spin state energies. Inner sphere oxidation of [CrL]2 with a quinone gives [Cr2 L2 (semiquinone)2 ], while pre-reduced [CrL]2 2- reacts with quinone to give [K3 (THF)3 Cr2 L2 (catecholate)2 (µ-OH)], a product of capture of two undercoordinated LCr(catecholate)1- by hydroxide.

13.
J Phys Chem A ; 124(46): 9674-9682, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33164521

RESUMEN

We present an optimized density-functional tight-binding (DFTB) parameterization for iron-based complexes based on the popular trans3d set of parameters. The transferability of the original and optimized parameterizations is assessed using a set of 50 iron complexes, which include carbonyl, cyanide, polypyridine, and cyclometalated ligands. DFTB-optimized structures predicted using the trans3d parameters show a good agreement with both experimental crystal geometries and density functional theory (DFT)-optimized structures for Fe-N bond lengths. Conversely, Fe-C bond lengths are systematically overestimated. We improve the accuracy of Fe-C interactions by truncating the Fe-O repulsive potential and reparameterizing the Fe-C repulsive potential using a training set of six isolated iron complexes. The new trans3d*-LANLFeC parameter set can produce accurate Fe-C bond lengths in both geometry optimizations and molecular dynamics (MD) simulations, without significantly affecting the accuracy of Fe-N bond lengths. Moreover, the potential energy curves of Fe-C interactions are considerably improved. This improved parameterization may open the door to accurate MD simulations at the DFTB level of theory for large systems containing iron complexes, such as sensitizer-semiconductor assemblies in dye-sensitized solar cells, that are not easily accessible with DFT approaches because of the large number of atoms.

14.
Inorg Chem ; 58(14): 9443-9451, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251052

RESUMEN

This work reports a combined experimental and computational mechanistic investigation into the electrocatalytic reduction of nitrite to ammonia by a cobalt macrocycle in an aqueous solution. In the presence of a nitrite substrate, the Co(III) precatalyst, [Co(DIM)(NO2)2]+ (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene), is formed in situ. Cyclic voltammetry and density functional theory (DFT) calculations show that this complex is reduced by two electrons, the first of which is coupled with nitrite ligand loss, to provide the active catalyst. Experimental observations suggest that the key N-O bond cleavage step is facilitated by intramolecular proton transfer from an amine group of the macrocycle to a nitro ligand, as supported by modeling several potential reaction pathways with DFT. These results provide insights into how the combination of a redox active ligand and first-row transition metal can facilitate the multiproton/electron process of nitrite reduction.

15.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241335

RESUMEN

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

16.
J Phys Chem A ; 123(21): 4543-4554, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31038956

RESUMEN

Molecular dynamics (MD) simulations with full-dimensional potential energy surfaces (PESs) obtained from high-level ab initio calculations are frequently used to model reaction dynamics of small molecules (i.e., molecules with up to 10 atoms). Construction of full-dimensional PESs for larger molecules is, however, not feasible since the number of ab initio calculations required grows rapidly with the increase of dimension. Only a small number of coordinates are often essential for describing the reactivity of even very large systems, and reduced-dimensional PESs with these coordinates can be built for reaction dynamics studies. While analytical methods based on transition-state theory framework are well established for analyzing the reduced-dimensional PESs, MD simulation algorithms capable of generating trajectories on such surfaces are more rare. In this work, we present a new MD implementation that utilizes the relaxed reduced-dimensional PES for standard microcanonical (NVE) and canonical (NVT) MD simulations. The method is applied to the pyramidal inversion of a NH3 molecule. The results from the MD simulations on a reduced, three-dimensional PES are validated against the ab initio MD simulations, as well as MD simulations on full-dimensional PES and experimental data.

17.
Inorg Chem ; 57(16): 9907-9917, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30088765

RESUMEN

The quintet-singlet energy difference (Δ EQ/S) in Fe(II) polypyridine complexes is often interpreted in terms of metal-ligand π interactions. DFT calculations on a series of substituted [Fe(bpy)3]2+ (bpy = 2,2'-bipyridine) complexes show the disparate magnitudes of substituent effects on tuning Δ EQ/S and reduction potentials ( E°). In this series, E° spans a much larger range than Δ EQ/S (2.07 vs 0.29 eV). While small changes in Δ EQ/S are controlled by metal-ligand π interactions, large changes in E° arise from modification of the electrostatic environment around the Fe center. Molecular orbital analysis reveals that, contrary to the typical description of bpy as a π-acceptor, bpy is better described as acting as both a π-donor and π-acceptor in [Fe(bpy)3]2+ complexes, even when it is substituted with highly electron withdrawing substituents. Overall, substituent modification is a useful strategy for fine-tuning the ligand field strength but not for significant reordering of the spin-state manifold, despite the large effect on metal-ligand electrostatic interactions.

18.
Inorg Chem ; 57(9): 5585-5596, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29683318

RESUMEN

Twisting motions in six-coordinate trischelate transition-metal complexes have long been recognized as a potential reaction coordinate for nondissociative racemization by changing the coordination geometry from octahedral to trigonal prismatic in the transition state. These pathways have been previously established as the Bailar twist (conversion to D3 h symmetry) and the Ray-Dutt twist (conversion to C2 v symmetry). Twisting motions have been shown to be associated with changes in spin state and are therefore of relevance not only to thermal isomerization pathways but also to spin-crossover (SCO) and intersystem crossing mechanisms. In this work, density functional theory and complete active space self-consistent field calculations are used to probe the structural and energetic features of idealized Bailar and Ray-Dutt twisting mechanisms for a model Fe(II) polypyridine complex, [Fe(bpy)3]2+ (bpy = 2,2'-bipyridine). We find that the energies of the D3 h and C2 v trigonal prismatic structures are strongly dependent on spin state, with thermally accessible species only being possible on the quintet surface, enforcing the necessary relationship between SCO and torsional motion. The Ray-Dutt twist on the quintet surface is calculated to proceed with a low barrier, and is likely the preferable twisting mechanism for this complex. We additionally identify a new distorted Bailar twist of C3 h geometry, which is considerably lower in energy than the idealized D3 h structure due to a combination of both steric and electronic factors. The computational analysis presented herein offers insight into how Fe-N bond strength, interligand steric repulsion, and ligand flexibility can be exploited to influence the rates of different twisting mechanisms and the critical motions involved.

19.
Inorg Chem ; 57(24): 15445-15461, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30516977

RESUMEN

Three series of pentamethylcyclopentadienyl (Cp*) Ir(III) complexes with different bidentate ligands were synthesized and structurally characterized, [Cp*Ir(tpy)L] n+ (tpy = 2-tolylpyridinato; n = 0 or 1), [Cp*Ir(piq)L] n+ (piq = 1-phenylisoquinolinato; n = 0 or 1), and [Cp*Ir(bpy)L] m+ (bpy = 2,2'-bipyridine; m = 1 or 2), featuring a range of monodentate carbon-donor ligands within each series [L = 2,6-dimethylphenylisocyanide; 3,5-dimethylimidazol-2-ylidene (NHC); methyl)]. The spectroscopic and photophysical properties of these molecules and those of the photocatalyst [Cp*Ir(bpy)H]+ were examined to establish electronic structure-photophysical property relationships that engender productive photochemical reactivity of this hydride and its methyl analogue. The Ir(III) chromophores containing ancillary CNAr ligands exhibited features anticipated for predominantly ligand-centered (LC) excited states, and analogues bearing the NHC ancillary exhibited properties consistent with LC excited states containing a small admixture of metal-to-ligand charge-transfer (MLCT) character. However, the molecules featuring anionic and strongly σ-donating methyl or hydride ligands exhibited photophysical properties consistent with a high degree of CT character. Density functional theory calculations suggest that the lowest energy triplet states in these complexes are composed of a mixture of MLCT and ligand-to-ligand CT originating from both the Cp* and methyl or hydride ancillary ligands. The high degree of CT character in the triplet excited states of methyliridium complexes bearing C^N-cyclometalated ligands offer a striking contrast to the photophysical properties of pseudo-octahedral structures fac-Ir(C^N)3 or Ir(C^N)2(acac) that have lowest-energy triplet excited states characterized as primarily LC character with a more moderate MLCT admixture.

20.
J Phys Chem A ; 122(7): 1821-1830, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29369631

RESUMEN

Fe(II)-polypyridines have limited applications as chromophores in dye-sensitized solar cells due to the short lifetimes (∼100 fs) of their photoactive metal-to-ligand charge transfer (MLCT) states formed upon photoexcitation. Recently, a 100-fold increase in the MLCT lifetime was observed in a [Fe(CNC)2]2+ complex (CNC = 2,6-bis(3-methylimidazole-1-ylidine)pyridine) which has strong σ-donating N-heterocyclic carbene ligand in comparison to the weaker field parent [Fe(tpy)2]2+ complex (tpy = 2,2':6',2″-terpyridine). This study utilizes density functional theory (DFT), time-dependent DFT, and quantum dynamics simulations to investigate the interfacial electron transfer (IET) in [Fe(cCNC)2]2+ (cCNC = 4'-carboxy-2,6-bis(3-methylimidazole-1-ylidine)pyridine) and [Fe(ctpy)2]2+ (ctpy = 4'-carboxy-2,2':6',2″-terpyridine) sensitized TiO2. Our results suggest that the replacement of tpy by CNC ligand does not significantly speed up the IET kinetics in the [Fe(cCNC)2]2+-TiO2 assembly in comparison to the [Fe(ctpy)2]2+-TiO2 analogue. The high IET efficiency in the [Fe(cCNC)2]2+-TiO2 assemblies is therefore due to longer lifetime of [Fe(cCNC)2]2+ photoactive 3MLCT states rather than faster electron injection kinetics. It was also found that the inclusion of conformational sampling in the computational model is important for proper description of the IET processes in these systems, as the models relying on the use of only fully optimized structures may yield misleading results. The simulations presented in this work also illustrate various pitfalls of utilizing properties such as electronic coupling, number of available acceptor states, and driving force, as well as calculations based on Fermi's golden rule framework, to reach conclusions on the IET efficiency in dye-semiconductor systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA