Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35043110

RESUMEN

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMΦ). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.

2.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103512

RESUMEN

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Asunto(s)
COVID-19 , Macrófagos Alveolares , Humanos , Pulmón , Macrófagos , Monocitos
3.
Lancet Gastroenterol Hepatol ; 7(3): 219-229, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065058

RESUMEN

BACKGROUND: Surgical resection of early stage hepatocellular carcinoma is standard clinical practice; however, most tumours recur despite surgery, and no perioperative intervention has shown a survival benefit. Neoadjuvant immunotherapy has induced pathological responses in multiple tumour types and might decrease the risk of postoperative recurrence in hepatocellular carcinoma. We aimed to evaluate the clinical activity of neoadjuvant cemiplimab (an anti-PD-1) in patients with resectable hepatocellular carcinoma. METHODS: For this single-arm, open-label, phase 2 trial, patients with resectable hepatocellular carcinoma (stage Ib, II, and IIIb) were enrolled and received two cycles of neoadjuvant cemiplimab 350 mg intravenously every 3 weeks followed by surgical resection. Eligible patients were aged 18 years or older, had confirmed resectable hepatocellular carcinoma, an Eastern Cooperative Oncology Group performance status of 0 or 1, and adequate liver function. Patients were excluded if they had metastatic disease, if the surgery was not expected to be curative, if they had a known additional malignancy requiring active treatment, or if they required systemic steroid treatment or any other immunosuppressive therapy. After resection, patients received an additional eight cycles of cemiplimab 350 mg intravenously every 3 weeks in the adjuvant setting. The primary endpoint was significant tumour necrosis on pathological examination (defined as >70% necrosis of the resected tumour). Secondary endpoints included delay of surgery, the proportion of patients with an overall response, change in CD8+ T-cell density, and adverse events. Tumour necrosis and response were analysed in all patients who received at least one dose of cemiplimab and completed surgical resection; safety and other endpoints were analysed in the intention-to-treat population. Patients underwent pre-treatment biopsies and blood collection throughout treatment. This trial is registered with ClinicalTrials.gov (NCT03916627, Cohort B) and is ongoing. FINDINGS: Between Aug 5, 2019, and Nov 25, 2020, 21 patients were enrolled. All patients received neoadjuvant cemiplimab, and 20 patients underwent successful resection. Of the 20 patients with resected tumours, four (20%) had significant tumour necrosis. Three (15%) of 20 patients had a partial response, and all other patients maintained stable disease. 20 (95%) patients had a treatment-emergent adverse event of any grade during the neoadjuvant treatment period. The most common adverse events of any grade were increased aspartate aminotransferase (in four patients), increased blood creatine phosphokinase (in three), constipation (in three), and fatigue (in three). Seven patients had grade 3 adverse events, including increased blood creatine phosphokinase (in two patients) and hypoalbuminaemia (in one). No grade 4 or 5 events were observed. One patient developed pneumonitis, which led to a delay in surgery by 2 weeks. INTERPRETATION: This report is, to our knowledge, the largest clinical trial of a neoadjuvant anti-PD-1 monotherapy reported to date in hepatocellular carcinoma. The observed pathological responses to cemiplimab in this cohort support the design of larger trials to identify the optimal treatment duration and definitively establish the clinical benefit of preoperative PD-1 blockade in patients with hepatocellular carcinoma. FUNDING: Regeneron Pharmaceuticals.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Aspartato Aminotransferasas/sangre , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Creatina Quinasa/sangre , Femenino , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante
4.
Nat Commun ; 12(1): 4854, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381049

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Transcriptoma/inmunología , Adolescente , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Linfocitos T CD8-positivos/metabolismo , COVID-19/genética , Niño , Preescolar , Regulación hacia Abajo , Femenino , Humanos , Lactante , Recién Nacido , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Síndrome Mucocutáneo Linfonodular/genética , Síndrome Mucocutáneo Linfonodular/inmunología , SARS-CoV-2/patogenicidad , Síndrome de Respuesta Inflamatoria Sistémica/genética , Adulto Joven
6.
medRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32909006

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition. By projecting the MIS-C signature onto a co-expression network, we identified disease gene modules and found genes downregulated in MIS-C clustered in a module enriched for the transcriptional signatures of exhausted CD8 + T-cells and CD56 dim CD57 + NK cells. Bayesian network analyses revealed nine key regulators of this module, including TBX21 , a central coordinator of exhausted CD8 + T-cell differentiation. Together, these findings suggest dysregulated cytotoxic lymphocyte response to SARS-Cov-2 infection in MIS-C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA