Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36748481

RESUMEN

A nitrogen-fixing actinobacterium strain (Cc1.17T) isolated from a root nodule of Colletia cruciata was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of meso-diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C16 : 0, iso-C16 : 0, C17 : 1 ω9 and C18 : 1 ω9 as major fatty acids (>10 %). Strain Cc1.17T showed 16S rRNA gene sequence similarities of 97.4-99.8 % to validly named Frankia species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17T in a new lineage within the genus Frankia. Digital DNA-DNA hybridization and average nucleotide identity values between strain Cc1.17T and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17T (=DSM 43829T=CECT 9313T) merits recognition as the type strain of a new species for which the name Frankia colletiae sp. nov. is proposed.


Asunto(s)
Frankia , Rubiaceae , Ácidos Grasos/química , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Rubiaceae/genética
2.
Arch Microbiol ; 204(5): 260, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35419662

RESUMEN

A genome-based polyphasic study was undertaken to establish the taxonomic status of an actinobacterium strain isolated from an actinorhizal root nodule. Strain ncl1T was found to have chemotaxonomic, cultural and morphological properties characteristic of members of the genus Nocardia. The strain was closely related to Nocardia aurea in the phylogenetic trees based on 16S rRNA gene and genome sequences. The draft genome of the strain is 8.9 Mbp in size, has a genomic DNA G + C content of 67.0% and was predicted to contain at least 19 biosynthetic gene clusters encoding for specialized metabolites. Strain ncl1T was distinguished from its closest neighbour, N. aurea DSM 103986T, by a broad range of phenotypic properties and by low average nucleotide identity and digital DNA-DNA hybridization scores. Consequently, the strain represents a novel Nocardia species for which the name Nocardia noduli sp. nov. is proposed. The type strain is ncl1T (CECT 30123T = DSM 110878T). The present study provides further evidence that actinorhizal nodules are a source of novel species of Nocardia.


Asunto(s)
Actinobacteria , Gastrópodos , Nocardia , Actinobacteria/genética , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Int J Syst Evol Microbiol ; 69(11): 3465-3471, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31460855

RESUMEN

A polyphasic study was undertaken to establish the taxonomic provenance of a rapidly growing Mycolicibacterium strain, CECT 8783T, recovered from the plant Stellera chamaejasme L. in Yunnan Province, China. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the strain formed a distinct branch within the evolutionary radiation of the genus Mycolicibacterium. The strain was most closely related to Mycolicibacterium moriokaense DSM 44221T with 98.4 % 16S rRNA gene sequence similarity, but was distinguished readily from this taxon by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity and digital DNA-DNA hybridization values of 79.5 and 21.1 %, respectively. Consequently, the strain is considered, to represent a novel species of Mycolicibacterium for which the name Mycolicibacterium stellerae sp. nov is proposed; the type strain is I10A-01893T (=CECT 8783T=KCTC 19843T=DSM 45590T).


Asunto(s)
Mycobacteriaceae/clasificación , Filogenia , Thymelaeaceae/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Mycobacteriaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Antonie Van Leeuwenhoek ; 112(1): 57-65, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30030730

RESUMEN

Strain CpI1T was, in 1978, the first isolate of the genus Frankia to be obtained from Comptonia peregrina root nodules. In this study, a polyphasic approach was performed to identify the taxonomic position of strain CpI1T among the members of the genus Frankia. The strain contains meso-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, mannose, rhamnose, ribose and xylose as cell wall sugars. The polar lipids were found to consist of phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, an aminophospholipid and unidentified phospholipids and lipids. The predominant menaquinone was identified as MK-9 (H8), while the major fatty acid are iso-C16:0 and C17:1ω 8c. The 16S rRNA gene sequence identity varies from 97.4 to 99.6% with the type strains of currently described Frankia species. Phylogenetic analyses based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) using atp1, ftsZ, dnaK, gyrA and secA gene sequences showed that strain CpI1T is closely related to Frankia alni ACN14aT. The genome size of strain CpI1T is 7.6 Mb with a digital DNA G+C content of 72.4%. Digital DNA:DNA hybridization (values between strain CpI1T and its close phylogenetic relative F. alni ACN14aT was 44.1%, well below the threshold of 70% for distinguishing between bacterial genomic species. Based on the phenotypic, phylogenetic and genomic data, strain CpI1T (= DSM44263T = CECT9035T) warrants classification as the type strain of a novel species, for which the name Frankia torreyi sp. nov. is proposed.


Asunto(s)
Frankia/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Cultivo Axénico , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Frankia/clasificación , Frankia/genética , Frankia/metabolismo , Myricaceae/microbiología , Filogenia , ARN Ribosómico 16S/genética
5.
Antonie Van Leeuwenhoek ; 111(7): 1209-1223, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29404824

RESUMEN

The taxonomic positions of two fast growing mycobacteria (CECT 8778T and CECT 8779T) were established using a polyphasic approach. The strains were shown to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Mycobacterium. Multi-locus sequence analyses (MLSA) show that strain CECT 8778T forms a well-supported clade together with the type strains of Mycobacterium aurum, Mycobacterium austroafricanum and Mycobacterium vanbaalenii while strain CECT 8779T presents as a distinct branch that is well separated from its near phylogenetic neighbours; it is also apparent from the MLSA genetic distances that these strains are most closely related to the type strains of Mycobacterium mageritense and M. vanbaalenii, respectively. Digital DNA:DNA hybridization and average nucleotide identity values between each of the strains and its close phylogenetic neighbour are below the 70 and 96% threshold values for definition of prokaryotic species; these results are underpinned by corresponding phenotypic data. Based upon the consensus of the phenotypic and phylogenetic analyses, it can be concluded that the two strains represent novel species within the genus Mycobacterium for which the following names are proposed: Mycobacterium neglectum sp. nov., with the type strain CECT 8778T (BN 3150T = DSM 44756T) and Mycobacterium palauense sp. nov., with the type strain CECT 8779T (= DSM 44914T).


Asunto(s)
Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , ADN Bacteriano/genética , Tipificación de Secuencias Multilocus , Mycobacterium/genética , Mycobacterium/crecimiento & desarrollo , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética
6.
Int J Syst Evol Microbiol ; 67(12): 4948-4955, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058645

RESUMEN

Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense. Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900T and SN 1904T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium. The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900T and SN 1904T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900T and SN 1904T form new centres of taxonomic variation within the genus Mycobacterium. Consequently, strains SN 1900T (40T=CECT 8763T=DSM 43219T) and SN 1904T (2409T=CECT 8766T=DSM 43532T) are considered to represent novel species, for which the names Mycobacteriumlehmannii sp. nov. and Mycobacteriumneumannii sp. nov. are proposed. A strain designated as 'Mycobacteriumacapulsensis' was shown to be a bona fide member of the putative novel species, M. lehmannii.


Asunto(s)
Mycobacterium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Tipificación de Secuencias Multilocus , Mycobacterium/aislamiento & purificación , Ácidos Micólicos/química , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Int J Syst Evol Microbiol ; 67(9): 3174-3181, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28869002

RESUMEN

A polyphasic study was undertaken to establish the taxonomic position of a non-chromogenic, rapidly growing Mycobacterium strain that had been isolated from sputum. The strain, CECT 8775T, has chemotaxonomic and cultural properties consistent with its classification in the genus Mycobacterium and was distinguished from the type strains of closely related mycobacterial species, notably from Mycobacterium paraense DSM 46749T, its nearest phylogenetic neighbour, based on 16S rRNA, hsp65 and rpoB gene sequence data. These organisms were also distinguished by a broad range of chemotaxonomic and phenotypic features and by a digital DNA-DNA relatedness value of 22.8 %. Consequently, the strain is considered to represent a novel species of Mycobacterium for which the name Mycobacterium eburneum sp. nov is proposed; the type strain is X82T (CECT 8775T=DSM 44358T).


Asunto(s)
Mycobacterium/clasificación , Filogenia , Esputo/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Humanos , Mycobacterium/genética , Mycobacterium/aislamiento & purificación , Infecciones por Mycobacterium/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suiza
8.
Curr Res Microb Sci ; 7: 100290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39497933

RESUMEN

Actinomycetes are a prolific source of bioactive natural compounds many of which are used as antibiotics or other drugs. In this study we investigated the genomic and biochemical diversity of 32 actinobacterial strains that had been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures decades ago. Genome-based phylogeny and in silico DNA-DNA hybridization supported the assignment of these strains to 26 novel species and two novel subspecies and a reclassification of a Streptomyces species. These results were consistent with the biochemical, enzymatic, and chemotaxonomic features of the strains. Most of the strains showed antimicrobial activities against a range of Gram-positive and Gram-negative bacteria, and against yeast. Genomic analysis revealed the presence of numerous unique biosynthetic gene clusters (BGCs) encoding for potential novel antibiotic and anti-cancer compounds. Strains DSM 41636T and DSM 61640T produced the antibiotic compounds A33853 and SF2768, respectively. Overall, this reflects the significant pharmaceutical and biotechnological potential of the proposed novel type strains and underlines the role of prokaryotic systematics for drug discovery. In order to compensate for the gender gap in naming prokaryotic species, we propose the eponyms for all newly described species to honour female scientists.

9.
Front Bioeng Biotechnol ; 12: 1255151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361790

RESUMEN

Strain collections are a treasure chest of numerous valuable and taxonomically validated bioresources. The Leibniz Institute DSMZ is one of the largest and most diverse microbial strain collections worldwide, with a long tradition of actinomycetes research. Actinomycetes, especially the genus Streptomyces, are renowned as prolific producers of antibiotics and many other bioactive natural products. In light of this, five Streptomyces strains, DSM 40971T, DSM 40484T, DSM 40713T, DSM 40976T, and DSM 40907T, which had been deposited a long time ago without comprehensive characterization, were the subject of polyphasic taxonomic studies and genome mining for natural compounds based on in vitro and in silico analyses. Phenotypic, genetic, and phylogenomic studies distinguished the strains from their closely related neighbors. The digital DNA-DNA hybridization and average nucleotide identity values between the five strains and their close, validly named species were below the threshold of 70% and 95%-96%, respectively, determined for prokaryotic species demarcation. Therefore, the five strains merit being considered as novel Streptomyces species, for which the names Streptomyces kutzneri sp. nov., Streptomyces stackebrandtii sp. nov., Streptomyces zähneri sp. nov., Streptomyces winkii sp. nov., and Streptomyces kroppenstedtii sp. nov. are proposed. Bioinformatics analysis of the genome sequences of the five strains revealed their genetic potential for the production of secondary metabolites, which helped identify the natural compounds cinerubin B from strain DSM 40484T and the phosphonate antibiotic phosphonoalamide from strain DSM 40907T and highlighted strain DSM 40976T as a candidate for regulator-guided gene cluster activation due to the abundance of numerous "Streptomyces antibiotic regulatory protein" (SARP) genes.

10.
Stand Genomic Sci ; 2(1): 19-28, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21304674

RESUMEN

Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

11.
Stand Genomic Sci ; 2(1): 29-37, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21304675

RESUMEN

Streptosporangium roseum Crauch 1955 is the type strain of the species which is the type species of the genus Streptosporangium. The 'pinkish coiled Streptomyces-like organism with a spore case' was isolated from vegetable garden soil in 1955. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Streptosporangiaceae, and the second largest microbial genome sequence ever deciphered. The 10,369,518 bp long genome with its 9421 protein-coding and 80 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

12.
Stand Genomic Sci ; 2(2): 158-67, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21304698

RESUMEN

Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the type genus of the family Geodermatophilaceae. G. obscurus is of interest as it has frequently been isolated from stressful environments such as rock varnish in deserts, and as it exhibits interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the first completed genome sequence of the family Geodermatophilaceae. The 5,322,497 bp long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

13.
Stand Genomic Sci ; 2(3): 318-26, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21304716

RESUMEN

Thermobispora bispora (Henssen 1957) Wang et al. 1996 is the type species of the genus Thermobispora. This genus is of great interest because it is strictly thermophilic and because it has been shown for several of its members that the genome contains substantially distinct (6.4% sequence difference) and transcriptionally active 16S rRNA genes. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member from the suborder Streptosporangineae and the first genome sequence of a member of the genus Thermobispora. The 4,189,976 bp long genome with its 3,596 protein-coding and 63 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

14.
Stand Genomic Sci ; 2(2): 203-11, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21304703

RESUMEN

Segniliparus rotundus Butler 2005 is the type species of the genus Segniliparus, which is currently the only genus in the corynebacterial family Segniliparaceae. This family is of large interest because of a novel late-emerging genus-specific mycolate pattern. The type strain has been isolated from human sputum and is probably an opportunistic pathogen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Segniliparaceae. The 3,157,527 bp long genome with its 3,081 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

15.
Stand Genomic Sci ; 1(3): 234-41, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21304662

RESUMEN

Stackebrandtia nassauensis Labeda and Kroppenstedt (2005) is the type species of the genus Stackebrandtia, and a member of the actinobacterial family Glycomycetaceae. Stackebrandtia currently contains two species, which are differentiated from Glycomyces spp. by cellular fatty acid and menaquinone composition. Strain LLR-40K-21(T) is Gram-positive, aerobic, and nonmotile, with a branched substrate mycelium and on some media an aerial mycelium. The strain was originally isolated from a soil sample collected from a road side in Nassau, Bahamas. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial suborder Glycomycineae. The 6,841,557 bp long single replicon genome with its 6487 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA