Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919677

RESUMEN

Platelet-rich fibrin (PRF) is a natural fibrin meshwork material with multiple functions that are suitable for tissue engineering applications. PRF provides a suitable scaffold for critical-size bone defect treatment due to its platelet cytokines and rich growth factors. However, the structure of PRF not only promotes cell attachment but also, due to its density, provides a pool for cell migration into the PRF to facilitate regeneration. In our study, we used repeated freeze drying to enlarge the pores of PRF to engineer large-pore PRF (LPPRF), a type of PRF that has expanded pores for cell migration. Moreover, a biodegradable Mg ring was used to provide stability to bone defects and the release of Mg ions during degradation may enhance osteoconduction and osteoinduction. Our results revealed that cell migration was more extensive when LPPRF was used rather than when PRF was used and that LPPRF retained the growth factors present in PRF. Moreover, the Mg ions released from the Mg ring during degradation significantly enhanced the calcium deposition of MC3T3-E1 preosteoblasts. In the present study, a bone substitute comprising LPPRF combined with a Mg ring was demonstrated to have much potential for critical-size bone defect repair.


Asunto(s)
Huesos/patología , Movimiento Celular/efectos de los fármacos , Magnesio/farmacología , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Fibrina Rica en Plaquetas/metabolismo , Cicatrización de Heridas , Animales , Huesos/efectos de los fármacos , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/ultraestructura , Conejos , Andamios del Tejido/química , Titanio/farmacología , Cicatrización de Heridas/efectos de los fármacos
2.
Entropy (Basel) ; 22(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33285849

RESUMEN

A novel lightweight Al-Ti-Cr-Mn-V medium-entropy alloy (MEA) system was developed using a nonequiatiomic approach and alloys were produced through arc melting and drop casting. These alloys comprised a body-centered cubic (BCC) and face-centered cubic (FCC) dual phase with a density of approximately 4.5 g/cm3. However, the fraction of the BCC phase and morphology of the FCC phase can be controlled by incorporating other elements. The results of compression tests indicated that these Al-Ti-Cr-Mn-V alloys exhibited a prominent compression strength (~1940 MPa) and ductility (~30%). Moreover, homogenized samples maintained a high compression strength of 1900 MPa and similar ductility (30%). Due to the high specific compressive strength (0.433 GPa·g/cm3) and excellent combination of strength and ductility, the cast lightweight Al-Ti-Cr-Mn-V MEAs are a promising alloy system for application in transportation and energy industries.

3.
Int J Mol Sci ; 20(9)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058825

RESUMEN

Mg-based alloys have great potential for development into fixation implants because of their highly biocompatible and biodegradable metallic properties. In this study, we sought to determine the biocompatibility of Mg60Zn35Ca5 bulk metallic glass composite (BMGC) with fabricated implants in a rabbit tendon-bone interference fixation model. We investigated the cellular cytotoxicity of Mg60Zn35Ca5 BMGC toward rabbit osteoblasts and compared it with conventional titanium alloy (Ti6Al4V) and polylactic acid (PLA). The results show that Mg60Zn35Ca5 BMGC may be classed as slightly toxic on the basis of the standard ISO 10993-5. We further characterized the osteogenic effect of the Mg60Zn35Ca5 BMGC extraction medium on rabbit osteoblasts by quantifying extracellular calcium and mineral deposition, as well as cellular alkaline phosphatase activity. The results of these tests were found to be promising. The chemotactic effect of the Mg60Zn35Ca5 BMGC extraction medium on rabbit osteoblasts was demonstrated through a transwell migration assay. For the in vivo section of this study, a rabbit tendon-bone interference fixation model was established to determine the biocompatibility and osteogenic potential of Mg60Zn35Ca5 BMGC in a created bony tunnel for a period of up to 24 weeks. The results show that Mg60Zn35Ca5 BMGC induced considerable new bone formation at the implant site in comparison with conventional titanium alloy after 24 weeks of implantation. In conclusion, this study revealed that Mg60Zn35Ca5 BMGC demonstrated adequate biocompatibility and exhibited significant osteogenic potential both in vitro and in vivo. These advantages may be clinically beneficial to the development of Mg60Zn35Ca5 BMGC implants for future applications.


Asunto(s)
Materiales Biocompatibles/química , Calcio/química , Vidrio/química , Magnesio/química , Nanopartículas del Metal/química , Osteogénesis/efectos de los fármacos , Zinc/química , Animales , Materiales Biocompatibles/farmacología , Biomarcadores , Huesos/diagnóstico por imagen , Huesos/metabolismo , Movimiento Celular , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Imagenología Tridimensional , Ensayo de Materiales , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Conejos , Tendones , Microtomografía por Rayos X
4.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38535642

RESUMEN

This study introduces Sn-substituted higher manganese silicides (MnSi1.75, HMS) synthesized via an arc-melting process followed by spark plasma sintering (SPS). The influences of Sn concentrations on the thermoelectric performance of Mn(Si1-xSnx)1.75 (x = 0, 0.001, 0.005, 0.01, 0.015) are systematically investigated. Our findings reveal that metallic Sn precipitates within the Mn(Si1-xSnx)1.75 matrix at x ≥ 0.005, with a determined solubility limit of approximately x = 0.001. In addition, substituting Si with Sn effectively reduces the lattice thermal conductivity of HMS by introducing point defect scattering. In contrast to the undoped HMS, the lattice thermal conductivity decreases to a minimum value of 2.0 W/mK at 750 K for the Mn(Si0.999Sn0.001)1.75 sample, marking a substantial 47.4% reduction. Consequently, a figure of merit (ZT) value of ~0.31 is attained at 750 K. This considerable enhancement in ZT is primarily attributed to the suppressed lattice thermal conductivity resulting from Sn substitution.

5.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746439

RESUMEN

The transformative potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and interferon-silent Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types without inducing IFN responses. ts SeV demonstrates unprecedented transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help to further expand the possibilities in personalized medicine and the treatment of genetic disorders.

6.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930268

RESUMEN

Medium-entropy alloys (MEAs) have attracted considerable attention in recent decades due to their exceptional material properties and design flexibility. In this study, lightweight and non-equiatomic MEAs with low density (~5 g/cm3), high strength (yield strength: 1200 MPa), and high ductility (plastic deformation: ≧10%) were explored. We fine-tuned a previously developed Ti-rich MEA by microalloying it with small amounts of Ni (reducing the atomic radius and increasing the elastic modulus) through solid solution strengthening to achieve a series of MEAs with enhanced mechanical properties. Among the prepared MEAs, Ti65Ni1 and Ti65Ni3 exhibited optimal properties in terms of the balance between strength and ductility. Furthermore, the Ti65Ni3 MEA was subjected to thermo-mechanical treatment (TMT) followed by cold rolling 70% (CR70) and cold rolling 85% (CR85). Subsequently, the processed samples were rapidly annealed at 743 °C, 770 °C, 817 °C, and 889 °C at a heating rate of 15 °C/s. X-ray diffraction analysis revealed that the MEA could retain its single-body-centered cubic solid solution structure after TMT. Additionally, the tensile testing results revealed that increasing the annealing temperature led to a decrease in yield strength and an increase in ductility. Notably, the Ti65Ni3 MEA sample that was subjected to CR70 and CR85 processing and annealed for 30 s exhibited high yield strength (>1250 MPa) and ductility (>13%). In particular, the Ti65Ni3 MEA subjected to CR85 exhibited a specific yield strength of 264 MPa·cm3/g, specific tensile strength of 300 MPa·cm3/g, and ductility of >13%.

7.
Materials (Basel) ; 16(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297333

RESUMEN

This study investigates the effect of laser volume energy density (VED) on the properties of AISI 420 stainless steel and TiN/AISI 420 composite manufactured by selective laser melting (SLM). The composite contained 1 wt.% TiN and the average diameters of AISI 420 and TiN powders were 45 µm and 1 µm, respectively. The powder for SLMing the TiN/AISI 420 composite was prepared using a novel two-stage mixing scheme. The morphology, mechanical, and corrosion properties of the specimens were analyzed, and their correlations with microstructures were investigated. The results showed that the surface roughness of both SLM samples decreases with increasing VED, while relative densities greater than 99% were achieved at VEDs higher than 160 J/mm3. The SLM AISI 420 specimen fabricated at a VED of 205 J/mm3 exhibited the highest density of 7.7 g/cm3, tensile strength (UTS) of 1270 MPa, and elongation of 3.86%. The SLM TiN/AISI 420 specimen at a VED of 285 J/mm3 had a density of 7.67 g/cm3, UTS of 1482 MPa, and elongation of 2.72%. The microstructure of the SLM TiN/AISI 420 composite displayed a ring-like micro-grain structure consisting of retained austenite on the grain boundary and martensite in the grain. The TiN particles strengthened the mechanical properties of the composite by accumulating along the grain boundary. The mean hardnesses of the SLM AISI 420 and TiN/AISI 420 specimens were 635 and 735 HV, respectively, which exceeded previously reported results. The SLM TiN/AISI 420 composite exhibited excellent corrosion resistance in both 3.5 wt.% NaCl and 6 wt.% FeCl3 solutions, with a resulting corrosion rate as low as 11 µm/year.

8.
Sci Rep ; 13(1): 3379, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854966

RESUMEN

The CoCrFeMnNi high entropy alloys remain an active field over a decade owing to its excellent mechanical properties. However, the application of CoCrFeMnNi is limited because of the relatively low tensile strength. Here we proposed a micromechanical model which adopted from the theory of dislocation density to investigate the strengthening mechanisms of precipitation of chromium-rich non-equiatomic CoCrFeMnNi alloy. The microstructures of CoCrFeMnNi were obtained directly from SEM-BSE images with different annealing temperatures. The proposed framework is validated by comparing simulations with experiments of uniaxial tensile tests on the CoCrFeMnNi alloys under different annealing temperatures. The stress-strain curves indicate that the precipitate has greater influence on post-yield hardening than the initial yielding strength. In addition, we identified that the particle distribution, controlled by the average size of the particle and the volume fraction of precipitation, can significantly enhance the strengthening effect. The numerical results indicate that HEAs with a precipitate distribution closer to a normal distribution and with smaller average size will tend to have higher strength and ductility.

9.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687626

RESUMEN

Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆Tx = 81 K, γ = 0.427, γm = 0.763), to fabricate a partial glass-formable spherical powder (the volume fraction of the amorphous phase in the atomized Ti-based powders being 73% [size < 25 µm], 61% [25-37 µm], and 50% [37-44 µm]), and establish an SLM parameter (a scan rate of 600 mm/s, a power of 120 W, and an overlap of 10%). The Ti42Zr35Si5Co12.5Sn2.5Ta3 bulk metallic glass composite was successfully fabricated through SLM. This study demonstrates that the TiZrSiCoSnTa system constitutes a promising basis for the additive manufacturing process in terms of preparing biocompatible metallic glass composites into complicated graded foam shapes.

10.
Pharmaceutics ; 14(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631664

RESUMEN

Mg-Zn-Ca bulk metallic glass (BMG) is a promising orthopedic fixation implant because of its biodegradable and biocompatible properties. Structural supporting bone implants with osteoinduction properties for effective bone regeneration have been highly desired in recent years. Osteogenic growth peptide (OGP) can increase the proliferation and differentiation of mesenchymal stem cells and enhance the mineralization of osteoblast cells. However, the short half-life and non-specificity to target areas limit applications of OGP. Mesoporous silica nanoparticles (MSNs) as nanocarriers possess excellent properties, such as easy surface modification, superior targeting efficiency, and high loading capacity of drugs or proteins. Accordingly, we propose a system of combining the OGP-containing MSNs with Mg-Zn-Ca BMG materials to promote bone regeneration. In this work, we conjugated cysteine-containing OGP (cgOGP, 16 a.a.) to interior walls of channels in MSNs and maintained the dispersity of MSNs via PEGylation. An in vitro study showed that metal ions released from Mg-Zn-Ca BMG promoted cell proliferation and migration and elevated alkaline phosphatase (ALP) activity and mineralization. On treating cells with both BMG ion-containing Minimum Essential Medium Eagle-alpha modification (α-MEM) and OGP-conjugated MSNs, enhanced focal adhesion turnover and promoted differentiation were observed. Hematological analyses showed the biocompatible nature of this BMG/nanocomposite system. In addition, in vivo micro-computed tomographic and histological observations revealed that our system stimulated osteogenesis and new bone formation around the implant site.

11.
Materials (Basel) ; 15(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36143635

RESUMEN

Most medium entropy alloys (MEAs) exhibit excellent mechanical properties, but their applications are limited because of their high density. This study explores a series of lightweight nonequiatomic Ti65(AlCrNbV)35-xZrx (x = 3, 5, 7, and 10) MEAs with a low density, high strength, and high ductility. To achieve solid solution strengthening, Zr with a large atomic radius was used. In addition, various thermomechanical treatment parameters were adopted to further improve the MEAs' mechanical properties. The density of the MEAs was revealed to be approximately 5 g/cm3, indicating that they were lightweight. Through an X-ray diffraction analysis, the MEAs were revealed to have a single body-centered cubic structure not only in the as-cast state but also after thermomechanical treatment. In terms of mechanical properties, all the as-cast MEAs with Zr additions achieved excellent performance (>1000 MPa tensile yield strength and 20% tensile ductility). In addition, hot rolling effectively eliminated the defects of the MEAs; under a given yield strength, hot-rolled MEAs exhibited superior ductility relative to non-hot-rolled MEAs. Overall, the Ti65(AlCrNbV)28Zr7 MEAs exhibited an optimum combination of mechanical properties (yield strength > 1200 MPa, plastic strain > 15%) after undergoing hot rolling 50%, cold rolling 70%, and rapid annealing for 30 to 50 s (at a temperature of approximately 850 °C) with a heating rate of 15 K/s. With their extremely high specific yield strength (264 MPa·g/cm3) and high ductility (22%), the Ti65(AlCrNbV)28Zr7 MEAs demonstrate considerable potential for energy and transportation applications.

12.
Micromachines (Basel) ; 12(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804190

RESUMEN

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc., Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80-70-60-70-80% (from center to both top side and bottom side) and had porosity values of 60-70-80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.

13.
Biomedicines ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829908

RESUMEN

Bacterial infection remains a great risk in medical implantation surgery. In this paper, we found that degradable metals may be a feasible alternative option of antibacterial implantation materials. It is known that the spalling mechanism of magnesium (Mg) during degradation leads to Mg ions-induced alkaline environment, which is harmful to planktonic bacteria. In this study, we showed that alkaline pH environment is almost harmless to those adhesive bacteria protected in well-formed biofilms. Moreover, experimental results demonstrated that the biofilm formed in the place where Mg spalls are destroyed, releasing the covered bacteria to be planktonic in the alkaline environment. As a result, the colonization of biofilms continues to shrink during the degradation of Mg. It implies that if degradable metal is employed as implantation material, even if bacterial infection occurs, it may be possibly cured without second surgery.

14.
Materials (Basel) ; 14(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361417

RESUMEN

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50-Ti-Cr-Mn-V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.

15.
J Funct Biomater ; 11(2)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370007

RESUMEN

A series of biocompatible high-porosity (up to 72.4%) TiZr-based porous bulk metallic glass (BMG) scaffolds were successfully fabricated by hot pressing a mixture of toxic element-free TiZr-based BMG powder and an Al particle space holder. The morphology of the fabricated scaffolds was similar to that of human bones, with pore sizes ranging from 75 to 250 µm. X-ray diffraction patterns and transmission electron microscopy images indicated that the amorphous structure of the TiZr-based BMG scaffolds remained in the amorphous state after hot pressing. Noncytotoxicity and extracellular calcium deposition of the TiZr-based BMG scaffolds at porosities of 32.8%, 48.8%, and 64.0% were examined by using the direct contact method. The results showed that the BMG scaffolds possess high cell viability and extracellular calcium deposition with average cell survival and deposition rates of approximately 170.1% and 130.9%, respectively. In addition, the resulting TiZr-based BMG scaffolds exhibited a considerable reduction in Young's moduli from 56.4 to 2.3 GPa, compressive strength from 979 to 19 MPa, and bending strength from 157 MPa to 49 MPa when the porosity was gradually increased from 2.0% to 72.4%. Based on the aforementioned specific characteristics, TiZr-based BMG scaffolds can be considered as potential candidates for biomedical applications in the human body.

16.
Materials (Basel) ; 13(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155846

RESUMEN

Mg-based bulk metallic glass materials have been investigated for their large potential for application in orthopedic implants due to their biocompatibility, low degradation rate, and osteogenetic ability. As an orthopedic implant, initial cell adhesion has been a critical issue for subsequent osteogenesis and bone formation because the first contact between cells and the implant occurs upon the implants surface. Here, we aimed to create Mg-based bulk metallic glass samples with three different surface roughness attributes in order to understand the degradation behavior of Mg-based bulk metallic glass and the adhesion ability and osteogenetic ability of the contact cells. It was found that the degradation behavior of Mg66Zn29Ca5 bulk metallic glass was not affected by surface roughness. The surface of the Mg66Zn29Ca5 bulk metallic glass samples polished via #800 grade sandpaper was found to offer a well-attached surface and to provide a good cell viability environment for Human MG63 osteoblast-like cell line. In parallel, more calcium and mineral deposition was investigated on extracellular matrix with higher surface roughness that verify the relationship between surface roughness and cell performance.

17.
Materials (Basel) ; 13(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861768

RESUMEN

A low density, medium entropy alloy (LD-MEA) Ti33Al33V34 (4.44 g/cm3) was successfully developed. The microstructure was found to be composed of a disordered body-centered-cubic (BCC) matrix and minor ordered B2 precipitates based on transmission electron microscopy characterization. Equilibrium and non-equilibrium modeling, simulated using the Calphad approach, were applied to predict the phase constituent. Creep behavior of {110} grains at elevated temperatures was investigated by nanoindentation and the results were compared with Cantor alloy and Ti-6Al-4V alloy. Dislocation creep was found to be the dominant mechanism. The decreasing trend of hardness in {110} grains of BCC TiAlV is different from that in {111} grains of face-centered-cubic (FCC) Cantor alloy due to the different temperature-dependence of Peierls stress in these two lattice structures. The activation energy value of {110} grains was lower than that of {111} grains in FCC Cantor alloy because of the denser atomic stacking in FCC alloys. Compared with conventional Ti-6Al-4V alloy, TiAlV possesses considerably higher hardness and specific strength (63% higher), 83% lower creep displacement at room temperature, and 50% lower creep strain rate over the temperature range from 500 to 600 °C under the similar 1150 MPa stress, indicating a promising substitution for Ti-6Al-4V alloy as structural materials.

18.
Materials (Basel) ; 12(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731562

RESUMEN

In this study, the effects of spinodal decomposition on the microstructures and mechanical properties of a TiZrNbTa alloy are investigated. The as-cast TiZrNbTa alloy possesses dual phases of TiZr-rich inter-dendrite (ID) and NbTa-rich dendrite (DR) domains, both of which have a body-centered cubic (BCC) structure. In the DRs of the as-cast alloy, the α and ω precipitates are found to be uniformly distributed. After homogenization at 1100 °C for 24 h followed by water quenching, spinodal decomposition occurs and an interconnected structure with a wavelength of 20 nm is formed. The α and ω precipitates remained in the structure. Such a fine spinodal structure strengthens the alloy effectively. Detailed strengthening calculations were conducted in order to estimate the strengthening contributions from the α and ω precipitates, as well as the spinodal decomposition microstructure.

19.
Sci Rep ; 9(1): 15558, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664140

RESUMEN

In this study, we sought to enhance the cutting properties of the various blades by coating them with Zr- and Fe-based thin film metallic glasses (TFMGs) to a thickness of 234-255 nm via sputter deposition. In oil-repellency/sliding tests on kitchen blades, the sliding angle and friction forces were as follows: bare blades (31.6°) and (35 µN), Ti-coated blades (20.3°) and (23.7 µN), and Z-TFMG coated blades (16.2°) and (19.2 µN). Comparisons were conducted with bare blades and those with a Teflon coating (a low-friction material commonly used for the coating of microtome blades). We also found that the Teflon coating reduced the cutting forces of an uncoated microtome blade by ~80%, whereas the proposed Z-TFMG achieved a ~51% reduction. The Z-TFMG presented no indications of delamination after being used 30 times for cutting; however, the Teflon coating proved highly susceptible to peeling and the bare blade was affected by surface staining. These results demonstrate the efficacy of the TFMG coating in terms of low friction, non-stick performance, and substrate adhesion. The performance of Z-TFMG and F-TFMG was also evaluated in split-thickness skin graft surgery using dermatome blades aimed at elucidating the influence of TFMG coatings on the healing of surgical incisions. When tested repeatedly on hairless skin, the surface roughness of uncoated blades increased by approximately 70%, whereas the surface roughness of TFMG-coated blades increases by only 8.6%. In the presence of hair, the surface roughness of uncoated blades increased by approximately ~108%, whereas the surface roughness of TFMG-coated blades increases by only ~23%. By Day 7, the wounds produced using TFMG-coated blades were noticeably smaller than those produced using uncoated blades, and these effects were particularly evident in hairy samples. This is a clear demonstration of the efficacy of TFMG surface coatings in preserving the cutting quality of surgical instruments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA