Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 162(3): 662-74, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26189679

RESUMEN

In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, untethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (µ-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Optogenética/métodos , Animales , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ratones , Sondas Moleculares , Tecnología Inalámbrica
2.
Nature ; 608(7922): 317-323, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948711

RESUMEN

Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An-1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl-, Br-, I-) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance1-6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn-1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).

3.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33708031

RESUMEN

Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating in vivo optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between in vivo studies. Here, we introduce a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes. We detail the 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless in vivo optogenetics. Successful in vivo studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future.

4.
Proc Natl Acad Sci U S A ; 113(22): 6131-6, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185907

RESUMEN

Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.


Asunto(s)
Materiales Biocompatibles/química , Suministros de Energía Eléctrica , Litio/química , Piel/química , Termografía/instrumentación , Tecnología Inalámbrica/instrumentación , Electricidad , Electrónica , Voluntarios Sanos , Humanos , Piel/efectos de la radiación
5.
Proc Natl Acad Sci U S A ; 113(50): E8169-E8177, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911798

RESUMEN

Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (µ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless µ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor µ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different µ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies.


Asunto(s)
Optogenética/instrumentación , Prótesis e Implantes , Neuronas Adrenérgicas/fisiología , Animales , Nivel de Alerta/fisiología , Conducta Animal , Estimulación Encefálica Profunda/instrumentación , Fenómenos Electromagnéticos , Diseño de Equipo , Locus Coeruleus/anatomía & histología , Locus Coeruleus/fisiología , Locus Coeruleus/cirugía , Masculino , Ratones , Modelos Teóricos , Recompensa , Tecnología Inalámbrica/instrumentación
6.
Small ; 14(4)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29215787

RESUMEN

Combination of optogenetics and pharmacology represents a unique approach to dissect neural circuitry with high specificity and versatility. However, conventional tools available to perform these experiments, such as optical fibers and metal cannula, are limited due to their tethered operation and lack of biomechanical compatibility. To address these issues, a miniaturized, battery-free, soft optofluidic system that can provide wireless drug delivery and optical stimulation for spatiotemporal control of the targeted neural circuit in freely behaving animals is reported. The device integrates microscale inorganic light-emitting diodes and microfluidic drug delivery systems with a tiny stretchable multichannel radiofrequency antenna, which not only eliminates the need for bulky batteries but also offers fully wireless, independent control of light and fluid delivery. This design enables a miniature (125 mm3 ), lightweight (220 mg), soft, and flexible platform, thus facilitating seamless implantation and operation in the body without causing disturbance of naturalistic behavior. The proof-of-principle experiments and analytical studies validate the feasibility and reliability of the fully implantable optofluidic systems for use in freely moving animals, demonstrating its potential for wireless in vivo pharmacology and optogenetics.


Asunto(s)
Optogenética/métodos , Farmacología/métodos , Tecnología Inalámbrica
7.
J Mech Phys Solids ; 120: 199-207, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30140108

RESUMEN

The concepts of open, cellular substrates for stretchable electronic systems are of interest partly due to their ability to minimize disruptions to the natural diffusive or convective flow of bio-fluids in advanced, bio-integrated implants. The overall elastic properties, and in particular the stretchability, of such systems are difficult to determine, however, because they depend strongly on the alignment and position of the serpentine interconnects relative to the openings in the cellular substrate, which is difficult to precisely control, even with the assistance of precision stages and visualization hardware. This paper establishes an analytic constitutive model for an equivalent medium for a cellular substrate under finite deformation. Results demonstrate that the elastic stretchability of a serpentine interconnect bonded to this equivalent medium represents a lower-bound estimate for the case of the actual cellular substrate, where the bonding adopts different alignments and positions. This finding provides a simple, conservative estimate of stretchability, which has general utility as an engineering design rule for platforms that exploit cellular substrates in stretchable electronics.

8.
Adv Funct Mater ; 27(1)2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28798658

RESUMEN

Development of unconventional technologies for wireless collection, storage and analysis of quantitative, clinically relevant information on physiological status is of growing interest. Soft, biocompatible systems are widely regarded as important because they facilitate mounting on external (e.g. skin) and internal (e.g. heart, brain) surfaces of the body. Ultra-miniaturized, lightweight and battery-free devices have the potential to establish complementary options in bio-integration, where chronic interfaces (i.e. months) are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Here we report materials and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate and heart rate variability. Specifically, reflectance pulse oximetry in conjunction with near-field communication (NFC) capabilities enables operation in thin, miniaturized flexible devices. Studies of the material aspects associated with the body interface, together with investigations of the radio frequency characteristics, the optoelectronic data acquisition approaches and the analysis methods capture all of the relevant engineering considerations. Demonstrations of operation on various locations of the body and quantitative comparisons to clinical gold standards establish the versatility and the measurement accuracy of these systems, respectively.

9.
Adv Funct Mater ; 9(3)2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28989338

RESUMEN

A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements.

10.
Adv Funct Mater ; 26(29): 5345-5351, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033714

RESUMEN

Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress-strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress-strain relation, with quantitative correspondence to finite element analysis and experiments.

11.
Adv Funct Mater ; 26(40): 7281-7290, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28413376

RESUMEN

This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

12.
J Mech Phys Solids ; 90: 179-202, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27087704

RESUMEN

Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.

13.
Small ; 11(8): 906-12, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25367846

RESUMEN

Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.


Asunto(s)
Electrónica , Piel/patología , Telemetría/instrumentación , Ingeniería Biomédica , Comunicación , Redes de Comunicación de Computadores , Dimetilpolisiloxanos/química , Humanos , Monitoreo Ambulatorio/instrumentación , Óptica y Fotónica , Fotoquímica , Tereftalatos Polietilenos/química , Presión , Solubilidad , Telemetría/métodos , Agua/química
14.
ACS Nano ; 18(20): 13061-13072, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38721824

RESUMEN

Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.

15.
Nat Protoc ; 18(1): 3-21, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271159

RESUMEN

This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires ~2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.


Asunto(s)
Encéfalo , Prótesis e Implantes , Animales , Optogenética/métodos , Impresión Tridimensional , Tecnología Inalámbrica
16.
ACS Appl Mater Interfaces ; 15(14): 18281-18289, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989129

RESUMEN

Based on their high applicability to wearable electronics, fiber-based stretchable electronics have been developed via different strategies. However, the electrical conductivity of a fiber electrode is severely degraded, following deformation upon stretching. Despite the introduction of conductive buckled structures to resolve this issue, there still exist limitations regarding the simultaneous realizations of high conductivity and stretchability. Here, we exploit the dense distribution of the Ag nanoparticle (AgNP) network in polyurethane (PU) to fabricate a strain-insensitive stretchable fiber conductor comprising highly conductive buckled shells via a facile chemical process. These buckled AgNPs/PU fibers exhibit stable and reliable electrical responses across a wide range (tensile strain = ∼200%), in addition to their high electrical conductivity (26,128 S/m) and quality factor (Q = 2.29). Particularly, the negligible electrical hysteresis and excellent durability (>10,000 stretching-releasing cycles) of the fibers demonstrate their high applicability to wearable electronics. Furthermore, we develop buckled fiber-based pH sensors exhibiting stable, repeatable, and highly distinguishable responses (changing pH is from 4 to 8, response time is 5-6 s) even under 100% tensile strain. The buckled AgNPs/PU fibers represent a facile strategy for maintaining the stable electrical performances of fiber electrodes across the strain range of human motion for wearable applications.

17.
ACS Appl Mater Interfaces ; 15(39): 46041-46053, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37747959

RESUMEN

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.

18.
Adv Sci (Weinh) ; 9(24): e2202549, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661444

RESUMEN

Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored. Here, a gallium-based TES integrated with a flexible and stretchable radiative cooler is presented, which offers zero-power thermal management for reliable rigid mode operation in the hot outdoors. The radiative cooler can both effectively reflect the heat transfer from the sun and emit thermal energy. It, therefore, allows a TES-in-the-air to maintain its temperature below the melting point of gallium (29.8 â„ƒ) under hot weather with strong sun exposure, thus preventing unwanted softening of the device. Comprehensive studies on optical, thermal, and mechanical characteristics of radiative-cooler-integrated TES, along with a proof-of-concept demonstration in the hot outdoors verify the reliability of this design approach, suggesting the possibility of expanding the use of TES in various environments.

19.
Adv Sci (Weinh) ; 8(10): 2004885, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026462

RESUMEN

For wearable electronics/optoelectronics, thermal management should be provided for accurate signal acquisition as well as thermal comfort. However, outdoor solar energy gain has restricted the efficiency of some wearable devices like oximeters. Herein, wireless/battery-free and thermally regulated patch-type tissue oximeter (PTO) with radiative cooling structures are presented, which can measure tissue oxygenation under sunlight in reliable manner and will benefit athlete training. To maximize the radiative cooling performance, a nano/microvoids polymer (NMVP) is introduced by combining two perforated polymers to both reduce sunlight absorption and maximize thermal radiation. The optimized NMVP exhibits sub-ambient cooling of 6 °C in daytime under various conditions such as scattered/overcast clouds, high humidity, and clear weather. The NMVP-integrated PTO enables maintaining temperature within ≈1 °C on the skin under sunlight relative to indoor measurement, whereas the normally used, black encapsulated PTO shows over 40 °C owing to solar absorption. The heated PTO exhibits an inaccurate tissue oxygen saturation (StO2) value of ≈67% compared with StO2 in a normal state (i.e., ≈80%). However, the thermally protected PTO presents reliable StO2 of ≈80%. This successful demonstration provides a feasible strategy of thermal management in wearable devices for outdoor applications.


Asunto(s)
Oximetría/instrumentación , Oxígeno/análisis , Procesamiento de Señales Asistido por Computador/instrumentación , Tecnología Inalámbrica/instrumentación , Regulación de la Temperatura Corporal , Frío , Humanos , Monitoreo Fisiológico/instrumentación , Oximetría/normas , Oximetría/estadística & datos numéricos , Oxígeno/metabolismo , Temperatura Cutánea
20.
Nat Biomed Eng ; 5(7): 749-758, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34272524

RESUMEN

Stretchable wearable devices for the continuous monitoring of physiological signals from deep tissues are constrained by the depth of signal penetration and by difficulties in resolving signals from specific tissues. Here, we report the development and testing of a prototype skin-conformal ultrasonic phased array for the monitoring of haemodynamic signals from tissues up to 14 cm beneath the skin. The device allows for active focusing and steering of ultrasound beams over a range of incident angles so as to target regions of interest. In healthy volunteers, we show that the phased array can be used to monitor Doppler spectra from cardiac tissues, record central blood flow waveforms and estimate cerebral blood supply in real time. Stretchable and conformal skin-worn ultrasonic phased arrays may open up opportunities for wearable diagnostics.


Asunto(s)
Hemodinámica/fisiología , Monitoreo Fisiológico/métodos , Circulación Cerebrovascular/fisiología , Corazón/fisiología , Humanos , Análisis por Micromatrices , Monitoreo Fisiológico/instrumentación , Relación Señal-Ruido , Ultrasonografía Doppler , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA