Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 141(6): 970-81, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20550933

RESUMEN

DNA double-strand breaks (DSBs) initiate extensive local and global alterations in chromatin structure, many of which depend on the ATM kinase. Histone H2A ubiquitylation (uH2A) on chromatin surrounding DSBs is one example, thought to be important for recruitment of repair proteins. uH2A is also implicated in transcriptional repression; an intriguing yet untested hypothesis is that this function is conserved in the context of DSBs. Using a novel reporter that allows for visualization of repair protein recruitment and local transcription in single cells, we describe an ATM-dependent transcriptional silencing program in cis to DSBs. ATM prevents RNA polymerase II elongation-dependent chromatin decondensation at regions distal to DSBs. Silencing is partially dependent on E3 ubiquitin ligases RNF8 and RNF168, whereas reversal of silencing relies on the uH2A deubiquitylating enzyme USP16. These findings give insight into the role of posttranslational modifications in mediating crosstalk between diverse processes occurring on chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Daño del ADN , Histonas/metabolismo , Humanos , Transcripción Genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
2.
Bioessays ; 43(10): e2100038, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34423467

RESUMEN

Although the promyelocytic leukemia (PML) protein is renowned for regulating a wide range of cellular processes and as an essential component of PML nuclear bodies (PML-NBs), the mechanisms through which it exerts its broad physiological impact are far from fully elucidated. Here, we review recent studies supporting an emerging view that PML's pleiotropic effects derive, at least partially, from its role in regulating histone H3.3 chromatin assembly, a critical epigenetic mechanism. These studies suggest that PML maintains heterochromatin organization by restraining H3.3 incorporation. Examination of PML's contribution to H3.3 chromatin assembly in the context of the cell cycle and PML-NB assembly suggests that PML represses heterochromatic H3.3 deposition during S phase and that transcription and SUMOylation regulate PML's recruitment to heterochromatin. Elucidating PML' s contributions to H3.3-mediated epigenetic regulation will provide insight into PML's expansive influence on cellular physiology and open new avenues for studying oncogenesis linked to PML malfunction.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/genética , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo
3.
J Cell Sci ; 132(6)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30796101

RESUMEN

The incorporation of the histone H3 variant, H3.3, into chromatin by the H3.3-specific chaperone DAXX and the ATP-dependent chromatin remodeling factor ATRX is a critical mechanism for silencing repetitive DNA. DAXX and ATRX are also components of promyelocytic nuclear bodies (PML-NBs), which have been identified as sites of H3.3 chromatin assembly. Here, we use a transgene array that can be visualized in single living cells to investigate the mechanisms that recruit PML-NB proteins (i.e. PML, DAXX, ATRX, and SUMO-1, SUMO-2 and SUMO-3) to heterochromatin and their functions in H3.3 chromatin assembly. We show that DAXX and PML are recruited to the array through distinct SUMOylation-dependent mechanisms. Additionally, PML is recruited during S phase and its depletion increases H3.3 deposition. Since this effect is abrogated when PML and DAXX are co-depleted, it is likely that PML represses DAXX-mediated H3.3 chromatin assembly. Taken together, these results suggest that, at heterochromatin, PML-NBs coordinate H3.3 chromatin assembly with DNA replication, which has important implications for understanding how transcriptional silencing is established and maintained.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Fase S/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Replicación del ADN/fisiología , Silenciador del Gen/fisiología , Células HeLa , Heterocromatina/metabolismo , Chaperonas de Histonas/metabolismo , Humanos , Nucleosomas/metabolismo
4.
J Biol Chem ; 293(32): 12360-12377, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29921582

RESUMEN

The histone H3 variant H3.3 is a highly conserved and dynamic regulator of chromatin organization. Therefore, fully elucidating its nucleosome incorporation mechanisms is essential to understanding its functions in epigenetic inheritance. We previously identified the RNase P protein subunit, Rpp29, as a repressor of H3.3 chromatin assembly. Here, we use a biochemical assay to show that Rpp29 interacts with H3.3 through a sequence element in its own N terminus, and we identify a novel interaction with histone H2B at an adjacent site. The fact that archaeal Rpp29 does not include this N-terminal region suggests that it evolved to regulate eukaryote-specific functions. Oncogenic H3.3 mutations alter the H3.3-Rpp29 interaction, which suggests that they could dysregulate Rpp29 function in chromatin assembly. We also used KNS42 cells, an H3.3(G34V) pediatric high-grade glioma cell line, to show that Rpp29 1) represses H3.3 incorporation into transcriptionally active protein-coding, rRNA, and tRNA genes; 2) represses mRNA, protein expression, and antisense RNA; and 3) represses euchromatic post-translational modifications (PTMs) and promotes heterochromatic PTM deposition (i.e. histone H3 Lys-9 trimethylation (H3K9me3) and H3.1/2/3K27me3). Notably, we also found that K27me2 is increased and K36me1 decreased on H3.3(G34V), which suggests that Gly-34 mutations dysregulate Lys-27 and Lys-36 methylation in cis The fact that Rpp29 represses H3.3 chromatin assembly and sense and antisense RNA and promotes H3K9me3 and H3K27me3 suggests that Rpp29 regulates H3.3-mediated epigenetic mechanisms by processing a transcribed signal that recruits H3.3 to its incorporation sites.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Glioma/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Transcripción Genética , Glioma/genética , Glioma/patología , Histonas/genética , Humanos , Metilación , Mutación , Nucleosomas/genética , Ribonucleasas/genética , Ribonucleoproteínas/genética , Células Tumorales Cultivadas
5.
Mol Cell ; 40(6): 976-87, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172662

RESUMEN

DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Factores de Transcripción/metabolismo , Antígenos Nucleares/metabolismo , Células Cultivadas , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Autoantígeno Ku , Nucleoproteínas/metabolismo , Rayos Ultravioleta
6.
J Biol Chem ; 288(27): 19882-99, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23689370

RESUMEN

Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the mechanism of H3.3 recruitment nor its essential function is well understood. Several different chaperones regulate H3.3 assembly at distinct sites. The H3.3 chaperone, Daxx, and the chromatin-remodeling factor, ATRX, are required for H3.3 incorporation and heterochromatic silencing at telomeres, pericentromeres, and the cytomegalovirus (CMV) promoter. By evaluating H3.3 dynamics at a CMV promoter-regulated transcription site in a genetic background in which RI chromatin assembly is blocked, we have been able to decipher the regulatory events upstream of RI nucleosomal deposition. We find that at the activated transcription site, H3.3 accumulates with sense and antisense RNA, suggesting that it is recruited through an RNA-mediated mechanism. Sense and antisense transcription also increases after H3.3 knockdown, suggesting that the RNA signal is amplified when chromatin assembly is blocked and attenuated by nucleosomal deposition. Additionally, we find that H3.3 is still recruited after Daxx knockdown, supporting a chaperone-independent recruitment mechanism. Sequences in the H3.3 N-terminal tail and αN helix mediate both its recruitment to RNA at the activated transcription site and its interaction with double-stranded RNA in vitro. Interestingly, the H3.3 gain-of-function pediatric glioblastoma mutations, G34R and K27M, differentially affect H3.3 affinity in these assays, suggesting that disruption of an RNA-mediated regulatory event could drive malignant transformation.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Citomegalovirus/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas/fisiología , ARN Viral/biosíntesis , Transcripción Genética/fisiología , Línea Celular , Citomegalovirus/genética , Histonas/genética , Humanos , Nucleosomas/genética , Nucleosomas/metabolismo , Estructura Secundaria de Proteína , ARN Viral/genética
7.
J Cell Physiol ; 229(3): 259-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23929405

RESUMEN

For a gene to be expressed, the functions of multiple molecular machines must be coordinated at the site of transcription. To understand the role of nuclear organization in transcription, it is necessary to visualize the dynamic interactions of regulatory factors with chromatin and RNA. It is currently possible to localize individual transcription sites in single living mammalian cells by engineering reporter gene constructs to include sequence elements which permit the visualization of nucleic acids in vivo. Upon stable integration, these transgenes form chromatinized arrays, which can be imaged during activation to obtain high-resolution quantitative information about transcriptional dynamics. Modeling can suggest new hypotheses about gene regulation, which can be tested both in the single-cell imaging system and at endogenous genes. This gene-specific imaging strategy has the potential to reveal regulatory mechanisms, which would be difficult to imagine outside of single living cells.


Asunto(s)
Núcleo Celular/metabolismo , Rastreo Celular/métodos , Cromatina/metabolismo , ADN/metabolismo , Microscopía Fluorescente , ARN/biosíntesis , Transcripción Genética , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Genes Reporteros , Humanos , Cinética , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Transfección
8.
J Cell Sci ; 125(Pt 22): 5489-501, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22976303

RESUMEN

Histone H3.3 is a constitutively expressed H3 variant implicated in the epigenetic inheritance of chromatin structures. Recently, the PML-nuclear body (PML-NB)/Nuclear Domain 10 (ND10) proteins, Daxx and ATRX, were found to regulate replication-independent histone H3.3 chromatin assembly at telomeres and pericentric heterochromatin. As it is not completely understood how PML-NBs/ND10s regulate transcription and resistance to viral infection, we have used a CMV-promoter-regulated inducible transgene array, at which Daxx and ATRX are enriched, to delineate the mechanisms through which they regulate transcription. When integrated into HeLa cells, which express both Daxx and ATRX, the array is refractory to activation. However, transcription can be induced when ICP0, the HSV-1 E3 ubiquitin ligase required to reverse latency, is expressed. As ATRX and Daxx are depleted from the activated array in ICP0-expressing HeLa cells, this suggests that they are required to maintain a repressed chromatin environment. As histone H3.3 is strongly recruited to the ICP0-activated array but does not co-localize with the DNA, this also suggests that chromatin assembly is blocked during activation. The conclusion that the Daxx and ATRX pathway is required for transcriptional repression and chromatin assembly at this site is further supported by the finding that an array integrated into the ATRX-negative U2OS cell line can be robustly activated and that histone H3.3 is similarly recruited and unincorporated into the chromatin. Therefore, this study has important implications for understanding gene silencing, viral latency and PML-NB/ND10 function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Análisis de la Célula Individual/métodos , Transcripción Genética , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Co-Represoras , Citomegalovirus/genética , ADN Helicasas/química , Células HeLa , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/química , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Activación Transcripcional/genética , Transgenes , Proteína Nuclear Ligada al Cromosoma X
9.
Curr Opin Cell Biol ; 15(2): 149-57, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12648670

RESUMEN

The advent of green fluorescent protein technology, its use in photobleaching experiments and the development of methods to rapidly acquire images and analyze complex datasets have opened the door to unraveling the mechanisms of nuclear functions in living cells. Studies over the past few years have characterized the movement of chromatin, nuclear proteins and nuclear bodies and, in some cases, correlated their dynamics with energy dependence, cell cycle progression, developmental changes, factor targeting and nuclear position. The mechanisms by which nuclear components move or are restrained have important implications for understanding not only the efficacy of nuclear functions but also the regulation of developmental programs and cellular growth.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Células Eucariotas/metabolismo , Animales , Ciclo Celular/fisiología , Núcleo Celular/ultraestructura , Estructuras del Núcleo Celular/metabolismo , Estructuras del Núcleo Celular/ultraestructura , Cromatina/metabolismo , Cromatina/ultraestructura , Células Eucariotas/ultraestructura , Humanos , Proteínas Nucleares/metabolismo , Transcripción Genética/fisiología
10.
Nat Cell Biol ; 4(2): 106-10, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11753375

RESUMEN

Promyelocytic leukaemia (PML) nuclear bodies are present in most mammalian cell nuclei. PML bodies are disrupted by PML retinoic acid receptor alpha (RAR alpha) oncoproteins in acute promyelocytic leukaemia. These bodies contain numerous proteins, including Sp100, SUMO-1, HAUSP(USP7), CBP and BLM, and they have been implicated in aspects of transcriptional regulation or as nuclear storage depots. Here, we show that three classes of PML nuclear bodies can be distinguished, on the basis of their dynamic properties in living cells. One class of PML bodies is particularly noteworthy in that it moves by a metabolic-energy-dependent mechanism. This represents the first example of metabolic-energy-dependent transport of a nuclear body within the mammalian cell nucleus.


Asunto(s)
Antígenos Nucleares , Núcleo Celular/metabolismo , Metabolismo Energético , Proteínas de Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Cricetinae , Humanos , Leucemia Promielocítica Aguda/fisiopatología , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Movimiento , Miosinas/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Proteínas Supresoras de Tumor
11.
Mol Biol Cell ; 27(7): 1154-69, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26842893

RESUMEN

In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Nucleosomas/metabolismo , Ribonucleasas , Ribonucleoproteínas , Proteínas Cromosómicas no Histona , Epigénesis Genética , Humanos
12.
Cancer Res ; 74(12): 3332-43, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736545

RESUMEN

BRD4 is implicated in the pathogenesis of a number of different cancers. It is also the target of translocation t(15;19) that accounts for the highly aggressive NUT midline carcinoma (NMC). We discovered that t(15;19) NMC cells display the ability to grow into stem cell-like spheres and express an exceptionally high level of the stem cell marker, SOX2. The BRD4-NUT fusion oncogene resulting from t(15;19) translocation is required for the abnormal activation of SOX2, which drives the stem cell-like proliferation and cellular transformation in NMC cells. SOX2 knockdown phenocopies the effects of BRD4-NUT inhibition, whereas ectopic SOX2 expression rescues the phenotype. The BRD4-NUT-induced abnormal SOX2 activation was observed in multiple NMC cell lines as well as in NMC primary tumors. We further demonstrate that BRD4-NUT oncoprotein recruits p300 to stimulate transcription activation and that inhibition of p300 represses SOX2 transcription in NMC cells. These studies identify this stem cell marker as a novel BRD4-NUT target that supports the highly aggressive transforming activity of t(15;19) carcinomas. Our study provides new mechanistic insights for understanding how alteration of BRD4 function by BRD4-NUT oncogene leads to the highly malignant NMC carcinoma. Because abnormal stem cell self-renewal is frequently observed during tumor formation and metastasis, the aberrant stem cell-like proliferation associated with BRD4 dysregulation observed in NMC carcinoma may have implications for studying the oncogenic mechanism of other BRD4-associated tumors.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Nucleares/fisiología , Proteínas de Fusión Oncogénica/fisiología , Factores de Transcripción SOXB1/metabolismo , Antineoplásicos/farmacología , Azepinas/farmacología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Unión Proteica , Factores de Transcripción SOXB1/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Transcripción Genética , Activación Transcripcional , Triazoles/farmacología , Factores de Transcripción p300-CBP/metabolismo
13.
Cell Rep ; 9(6): 2263-78, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25497088

RESUMEN

Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.


Asunto(s)
Herpesvirus Humano 1/fisiología , Telómero/virología , Replicación Viral , Línea Celular , Aberraciones Cromosómicas , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteolisis , ARN no Traducido/genética , ARN no Traducido/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Serina Proteasas/genética , Serina Proteasas/metabolismo , Complejo Shelterina/metabolismo , Telómero/química , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Methods Mol Biol ; 977: 249-58, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23436368

RESUMEN

Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.


Asunto(s)
Análisis de la Célula Individual/métodos , Activación Transcripcional , Animales , Fosfatos de Calcio/química , Técnicas de Cultivo de Célula , Línea Celular , Genes Reporteros , Humanos , Transfección , Transgenes
15.
Mol Biol Cell ; 24(9): 1454-68, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23485562

RESUMEN

Promyelocytic leukemia nuclear bodies (PML-NBs)/nuclear domain 10s (ND10s) are nuclear structures that contain many transcriptional and chromatin regulatory factors. One of these, Sp100, is expressed from a single-copy gene and spliced into four isoforms (A, B, C, and HMG), which differentially regulate transcription. Here we evaluate Sp100 function in single cells using an inducible cytomegalovirus-promoter-regulated transgene, visualized as a chromatinized transcription site. Sp100A is the isoform most strongly recruited to the transgene array, and it significantly increases chromatin decondensation. However, Sp100A cannot overcome Daxx- and α-thalassemia mental retardation, X-linked (ATRX)-mediated transcriptional repression, which indicates that PML-NB/ND10 factors function within a regulatory hierarchy. Sp100A increases and Sp100B, which contains a SAND domain, decreases acetyl-lysine regulatory factor levels at activated sites, suggesting that Sp100 isoforms differentially regulate transcription by modulating lysine acetylation. In contrast to Daxx, ATRX, and PML, Sp100 is recruited to activated arrays in cells expressing the herpes simplex virus type 1 E3 ubiquitin ligase, ICP0, which degrades all Sp100 isoforms except unsumoylated Sp100A. The recruitment Sp100A(K297R), which cannot be sumoylated, further suggests that sumoylation plays an important role in regulating Sp100 isoform levels at transcription sites. This study provides insight into the ways in which viruses may modulate Sp100 to promote their replication cycles.


Asunto(s)
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Ensamble y Desensamble de Cromatina , Citomegalovirus/fisiología , Regiones Promotoras Genéticas , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Co-Represoras , ADN Helicasas/metabolismo , Epigénesis Genética , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteolisis , Sumoilación , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Latencia del Virus , Proteína Nuclear Ligada al Cromosoma X
16.
Epigenetics ; 8(10): 1101-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23949383

RESUMEN

In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular nuances of this complex landscape. In this study, we present our findings on a novel class of histone PTMs: Serine, Threonine, and Tyrosine O-acetylation. We have combined highly sensitive nano-LC-MS/MS experiments and immunodetection assays to identify and validate these unique marks found only on histone H3. Mass spectrometry experiments have determined that several of these O-acetylation marks are conserved in many species, ranging from yeast to human. Additionally, our investigations reveal that histone H3 serine 10 acetylation (H3S10ac) is potentially linked to cell cycle progression and cellular pluripotency. Here, we provide a glimpse into the functional implications of this H3-specific histone mark, which may be of high value for further studies of chromatin.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Serina/metabolismo , Acetilación , Animales , Ciclo Celular , Cromatografía Liquida , Drosophila/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Espectrometría de Masas en Tándem , Tetrahymena thermophila/metabolismo
17.
Mol Cancer Res ; 10(3): 401-14, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22205726

RESUMEN

The repair of DNA damage in highly compact, transcriptionally silent heterochromatin requires that repair and chromatin packaging machineries be tightly coupled and regulated. KAP1 is a heterochromatin protein and co-repressor that binds to HP1 during gene silencing but is also robustly phosphorylated by Ataxia telangiectasia mutated (ATM) at serine 824 in response to DNA damage. The interplay between HP1-KAP1 binding/ATM phosphorylation during DNA repair is not known. We show that HP1α and unmodified KAP1 are enriched in endogenous heterochromatic loci and at a silent transgene prior to damage. Following damage, γH2AX and pKAP1-s824 rapidly increase and persist at these loci. Cells that lack HP1 fail to form discreet pKAP1-s824 foci after damage but levels are higher and more persistent. KAP1 is phosphorylated at serine 473 in response to DNA damage and its levels are also modulated by HP1. Unlike pKAP1-s824, pKAP1-s473 does not accumulate at damage foci but is diffusely localized in the nucleus. While HP1 association tempers KAP1 phosphorylation, this interaction also slows the resolution of γH2AX foci. Thus, HP1-dependent regulation of KAP1 influences DNA repair in heterochromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Fraccionamiento Celular , Homólogo de la Proteína Chromobox 5 , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células 3T3 NIH , Proteínas Nucleares/química , Fosforilación , Proteínas Represoras/química , Especificidad por Sustrato , Transgenes/genética , Proteína 28 que Contiene Motivos Tripartito
18.
PLoS One ; 5(4): e10272, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20422051

RESUMEN

BACKGROUND: Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells. All accumulated rapidly with the VP16 activator as did the transcribed RNA. RNA was also detected at significantly more transcription sites in cells expressing the VP16-activator compared to a p53-activator. After alpha-amanitin pre-treatment, the VP16-activator, GCN5, and Brd2 are still recruited to the transcription site but the chromatin does not decondense. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a strong activator can rapidly overcome the condensed chromatin structure of an inactive transcription site and supercede the expected requirement for regulatory events to proceed in a temporally defined order. Additionally, activator strength determines the number of cells in which transcription is induced as well as the extent of chromatin decondensation. As chromatin decondensation is significantly reduced after alpha-amanitin pre-treatment, despite the recruitment of transcriptional activation factors, this provides further evidence that transcription drives large-scale chromatin decondensation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Técnicas Citológicas , Activación Transcripcional/genética , Alfa-Amanitina/farmacología , Sitios de Unión , Proteínas de Ciclo Celular , Línea Celular Tumoral , Etopósido/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/metabolismo
19.
J Cell Sci ; 120(Pt 14): 2301-7, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17606985

RESUMEN

The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Expresión Génica , Técnicas Genéticas , Animales , Cromatina/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fluorescencia , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Fluorescente Roja
20.
Science ; 304(5678): 1797-800, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15205532

RESUMEN

Understanding gene expression requires the ability to follow the fate of individual molecules. Here we use a cellular system for monitoring messenger RNA (mRNA)expression to characterize the movement in real time of single mRNA-protein complexes (mRNPs) in the nucleus of living mammalian cells. This mobility was not directed but was governed by simple diffusion. Some mRNPs were partially corralled throughout the nonhomogenous nuclear environment, but no accumulation at subnuclear domains was observed. Following energy deprivation, energy-independent motion of mRNPs was observed in a highly ATP-dependent nuclear environment; movements were constrained to chromatin-poor domains and excluded by newly formed chromatin barriers. This observation resolves a controversy, showing that the energetic requirements of nuclear mRNP trafficking are consistent with a diffusional model.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Citoplasma/metabolismo , Difusión , Metabolismo Energético , Recuperación de Fluorescencia tras Fotoblanqueo , Globinas/genética , Globinas/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Hibridación Fluorescente in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Peroxisomas/metabolismo , Biosíntesis de Proteínas , Proteínas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA