RESUMEN
A family of Pt(II) complexes bearing monoanionic C^N^N ligands as luminophoric units as well as a set of monodentate ligands derived from allenylidene and carbene species were synthesized and characterized in terms of structure and photophysical properties. In addition, we present the extraordinary molecular structure of a phosphorescent complex carrying an allenylidene ligand. Depending on the co-ligand, an effect can be observed in the photoluminescence lifetimes and quantum yields as well as in the radiative and radiation less deactivation rate constants. Their correlation with the substitution pattern was analyzed by comparing the photoluminescence in fluid solution at room temperature and in frozen glassy matrices at 77 K. Moreover, in order to gain a deeper understanding of the electronic states responsible for the optical properties, density functional theory calculations were performed. Finally, the cytotoxicity of the complexes was evaluated in vitro, showing that the cationic complexes exhibit strong effects at low micromolar concentrations. The calculated half-maximum effective concentrations (EC50 values) were 4 times lower in comparison to the established antitumor agent oxaliplatin. In contrast, the neutral species are less toxic, rendering them as potential bioimaging agents.
Asunto(s)
Antineoplásicos , Carbono/química , Platino (Metal)/química , Teoría Cuántica , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Luminiscencia , Estructura MolecularRESUMEN
The 4S-Ag(I)-C base pair (4S, 3-((2-(methylthio)pyrimidin-4-yl)thio)propane-1,2-diol; C, deoxycytidine) represents the first metal-mediated base pair comprising an S-glycosidic nucleoside analogue. We report here the synthesis of the phosphoramidite suitable for the automated solid-phase synthesis of DNA oligonucleotides containing 4S and its silver(I)-binding ability. The DNA duplexes comprising a 4S:C mispair exhibit a large thermal stabilization upon the addition of one equivalent of silver ions, giving rise to the formation of the above-mentioned silver(I)-mediated base pair. By formally replacing the sulfur atom in the glycosidic bond by an oxygen atom, i.e., by applying 3-((2-(methylthio)pyrimidin-4-yl)oxy)propane-1,2-diol (4 O) as the artificial nucleoside analogue, the participation of this atom as a donor atom in silver(I)-mediated base pairing is shown to be neglectable.Supplemental data for this article is available online at.