Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lung ; 202(3): 291-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602513

RESUMEN

PURPOSE: We aimed to examine the correlation between clinical characteristics and the pathogenic gene variants in patients with Primary Ciliary Dyskinesia (PCD). METHODS: We conducted a retrospective single-center study in patients with PCD followed at the University Hospitals Leuven. We included patients with genetically confirmed PCD and described their genotype, data from ultrastructural ciliary evaluation and clinical characteristics. Genotype/phenotype correlations were studied in patients with the most frequently involved genes. RESULTS: We enrolled 74 patients with a median age of 25.58 years. The most frequently involved genes were DNAH11 (n = 23) and DNAH5 (n = 19). The most frequent types of pathogenic variants were missense (n = 42) and frameshift variants (n = 36) and most patients had compound heterozygous variants (n = 44). Ciliary ultrastructure (p < 0.001), situs (p = 0.015) and age at diagnosis (median 9.50 vs 4.71 years, p = 0.037) differed between DNAH11 and DNAH5. When correcting for situs this difference in age at diagnosis was no longer significant (p = 0.973). Patients with situs inversus were diagnosed earlier (p = 0.031). Respiratory tract microbiology (p = 0.161), lung function (cross-sectional, p = 0.829 and longitudinal, p = 0.329) and chest CT abnormalities (p = 0.202) were not significantly different between DNAH11 and DNAH5 variants. CONCLUSION: This study suggests a genotype-phenotype correlation for some of the evaluated clinical characteristics of the two most frequently involved genes in this study, namely DNAH11 and DNAH5.


Asunto(s)
Dineínas Axonemales , Humanos , Masculino , Femenino , Adulto , Estudios Retrospectivos , Bélgica/epidemiología , Niño , Adolescente , Preescolar , Adulto Joven , Dineínas Axonemales/genética , Dineínas/genética , Persona de Mediana Edad , Síndrome de Kartagener/genética , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/fisiopatología , Estudios de Asociación Genética , Fenotipo , Lactante , Situs Inversus/genética , Situs Inversus/diagnóstico por imagen , Cilios/patología , Cilios/ultraestructura , Mutación Missense , Mutación del Sistema de Lectura
2.
J Antimicrob Chemother ; 73(7): 1823-1829, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596680

RESUMEN

Objectives: We report the use of reconstituted 3D human airway epithelium cells (HuAECs) of bronchial origin in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. Methods: HuAECs were infected with RSV-A Long strain (0.01 CCID50/cell, where CCID50 represents 50% cell culture infectious dose in HEp2 cells) on the apical compartment of the culture. At the time of infection or at 1 or 3 days post-infection, selected inhibitors were added and refreshed daily on the basal compartment of the culture. Viral shedding was followed up by apical washes collected daily and quantifying viral RNA by RT-qPCR. Results: RSV-A replicates efficiently in HuAECs and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post-infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleoside) elicited a marked antiviral effect even when the start of treatment was delayed until 1 day or even 3 days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected, untreated cultures (at 3 weeks post-infection), but levels were comparable to those of uninfected cultures in the presence of PC786, an RSV replication inhibitor, suggesting that an efficient antiviral treatment might inhibit virus-induced inflammation in this model. Conclusions: Overall, HuAECs offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.


Asunto(s)
Antivirales/farmacología , Mucosa Respiratoria/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Benzamidas , Benzazepinas , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Células Epiteliales/virología , Humanos , Técnicas de Cultivo de Órganos , ARN Viral/genética , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/genética , Compuestos de Espiro/farmacología
3.
Am J Respir Cell Mol Biol ; 53(4): 563-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25789548

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder caused by several distinct defects in genes responsible for ciliary beating, leading to defective mucociliary clearance often associated with randomization of left/right body asymmetry. Individuals with PCD caused by defective radial spoke (RS) heads are difficult to diagnose owing to lack of gross ultrastructural defects and absence of situs inversus. Thus far, most mutations identified in human radial spoke genes (RSPH) are loss-of-function mutations, and missense variants have been rarely described. We studied the consequences of different RSPH9, RSPH4A, and RSPH1 mutations on the assembly of the RS complex to improve diagnostics in PCD. We report 21 individuals with PCD (16 families) with biallelic mutations in RSPH9, RSPH4A, and RSPH1, including seven novel mutations comprising missense variants, and performed high-resolution immunofluorescence analysis of human respiratory cilia. Missense variants are frequent genetic defects in PCD with RS defects. Absence of RSPH4A due to mutations in RSPH4A results in deficient axonemal assembly of the RS head components RSPH1 and RSPH9. RSPH1 mutant cilia, lacking RSPH1, fail to assemble RSPH9, whereas RSPH9 mutations result in axonemal absence of RSPH9, but do not affect the assembly of the other head proteins, RSPH1 and RSPH4A. Interestingly, our results were identical in individuals carrying loss-of-function mutations, missense variants, or one amino acid deletion. Immunofluorescence analysis can improve diagnosis of PCD in patients with loss-of-function mutations as well as missense variants. RSPH4A is the core protein of the RS head.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Síndrome de Kartagener/diagnóstico , Proteínas/genética , Adolescente , Adulto , Niño , Preescolar , Proteínas del Citoesqueleto/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutación Missense , Multimerización de Proteína , Proteínas/metabolismo , Adulto Joven
4.
Hum Mutat ; 34(3): 462-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23255504

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by cilia and sperm dysmotility. About 12% of cases show perturbed 9+2 microtubule cilia structure and inner dynein arm (IDA) loss, historically termed "radial spoke defect." We sequenced CCDC39 and CCDC40 in 54 "radial spoke defect" families, as these are the two genes identified so far to cause this defect. We discovered biallelic mutations in a remarkable 69% (37/54) of families, including identification of 25 (19 novel) mutant alleles (12 in CCDC39 and 13 in CCDC40). All the mutations were nonsense, splice, and frameshift predicting early protein truncation, which suggests this defect is caused by "null" alleles conferring complete protein loss. Most families (73%; 27/37) had homozygous mutations, including families from outbred populations. A major putative hotspot mutation was identified, CCDC40 c.248delC, as well as several other possible hotspot mutations. Together, these findings highlight the key role of CCDC39 and CCDC40 in PCD with axonemal disorganization and IDA loss, and these genes represent major candidates for genetic testing in families affected by this ciliary phenotype. We show that radial spoke structures are largely intact in these patients and propose this ciliary ultrastructural abnormality be referred to as "IDA and microtubular disorganisation defect," rather than "radial spoke defect."


Asunto(s)
Axonema/genética , Dineínas/genética , Síndrome de Kartagener/genética , Mutación , Proteínas/genética , Alelos , Axonema/patología , Cilios/genética , Cilios/patología , Proteínas del Citoesqueleto/genética , Exoma , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Microscopía Electrónica , Linaje , Fenotipo
6.
PLoS Genet ; 5(3): e1000422, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19300481

RESUMEN

Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease.


Asunto(s)
Cilios/fisiología , Dineínas/administración & dosificación , Células Epiteliales/patología , Terapia Genética/métodos , Síndrome de Kartagener/terapia , Sistema Respiratorio/citología , Dineínas Axonemales , Dineínas/genética , Células Epiteliales/metabolismo , Humanos , Lentivirus/genética , Transducción Genética
7.
Hum Mutat ; 30(7): 1093-103, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19462466

RESUMEN

We investigated whether mutations in the genes that code for the different subunits of the amiloride-sensitive epithelial sodium channel (ENaC) might result in cystic fibrosis (CF)-like disease. In a small fraction of the patients, the disease could be potentially explained by an ENaC mutation by a Mendelian mechanism, such as p.V114I and p.F61L in SCNN1A. More importantly, a more than three-fold significant increase in incidence of several rare ENaC polymorphisms was found in the patient group (30% vs. 9% in controls), indicating an involvement of ENaC in some patients by a polygenetic mechanism. Specifically, a significantly higher number of patients carried c.-55+5G>C or p.W493R in SCNN1A in the heterozygous state, with odds ratios (ORs) of 13.5 and 2.7, respectively.The p.W493R-SCNN1A polymorphism was even found to result in a four-fold more active ENaC channel when heterologously expressed in Xenopus laevis oocytes. About 1 in 975 individuals in the general population will be heterozygous for the hyperactive p.W493R-SCNN1A mutation and a cystic fibrosis transmembrane conductance regulator (CFTR) gene that results in very low amounts (0-10%) functional CFTR. These ENaC/CFTR genotypes may play a hitherto unrecognized role in lung diseases.


Asunto(s)
Fibrosis Quística/genética , Canales Epiteliales de Sodio/genética , Mutación , Estudios de Casos y Controles , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Heterocigoto , Humanos , Polimorfismo Genético
9.
J Aerosol Med Pulm Drug Deliv ; 29(4): 378-85, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26741301

RESUMEN

INTRODUCTION: Nebulized drugs are used in the treatment of cystic fibrosis (CF) lung disease, asthma, and COPD, and increasingly also in other chronic lung diseases. Their use in CF is reasonably evidence based, but this is not so for use in other orphan diseases. Potential side effects often have not been studied. Therefore, we evaluated the influence of nebulized drugs on ciliary activity in an in vitro model. METHODS: We constructed an in vitro nebulization model to examine the effect of drugs on ciliary activity. The model was validated by testing solutions with known neutral, positive, or negative effect on ciliary beat frequency (CBF). Next, the influence on CBF of other inhaled drugs was tested. RESULTS: Nebulization of NaCl 0.9% had no influence on CBF, and was used as paired neutral control in further experiments. Salbutamol (Ventolin(®)) had a ciliostimulatory effect (CBF +18%, CBF at t0-t10-t60 7.1-8.5-8.6 Hz, p = 0.002), while hypertonic saline (CBF - 11%, CBF at t0-t10-t60 6.5-5.1-5.9 Hz, p = 0.018) and dry air (CBF -10%, CBF at t0-t10-t60 6.8-5.8-6.1 Hz, p = 0.008) had a cilioinhibitory effect. Nebulization of tobramycin inhaled solution (TOBI(®)) (p = 0.662), colistimethate (Colistineb(®)) (p = 0.369), rhDNAse (Pulmozyme(®)) (p = 0.069), ceftazidim (Glazidim(®)) (p = 0.875), and aztreonam (Cayston(®)) (p = 0.435) did not affect CBF. Obracin(®), a tobramycin containing solution manufactured for intravenous use, had a negative effect on CBF (CBF - 21%, CBF at t0-t10-t60 6.9-5.2-4.5 Hz, p = 0.004). CONCLUSION: Inhaled drugs that are used off-label might have an influence on ciliary activity. This must be taken into account when prescribing these drugs for non-CF indications.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Depuración Mucociliar/efectos de los fármacos , Mucosa Nasal/efectos de los fármacos , Nebulizadores y Vaporizadores , Fármacos del Sistema Respiratorio/administración & dosificación , Administración por Inhalación , Células Cultivadas , Cilios/efectos de los fármacos , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Células Epiteliales/ultraestructura , Humanos , Mucosa Nasal/fisiopatología , Mucosa Nasal/ultraestructura , Reproducibilidad de los Resultados , Fármacos del Sistema Respiratorio/toxicidad , Factores de Tiempo
10.
FEBS Lett ; 579(16): 3392-6, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15936019

RESUMEN

A direct interaction of the regulatory domain (R domain) of the cystic fibrosis transmembrane conductance regulator protein (CFTR) with PR65, a regulatory subunit of the protein phosphatase 2A (PP2A), was shown in yeast two hybrid, pull-down and co-immunoprecipitation experiments. The R domain could be dephosphorylated by PP2A in vitro. Overexpression of the interacting domain of PR65 in Caco-2 cells, as well as treatment with okadaic acid, showed a prolonged deactivation of the chloride channel. Taken together our results show a direct and functional interaction between CFTR and PP2A.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Células CACO-2 , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Proteína Fosfatasa 2 , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
Orphanet J Rare Dis ; 9: 11, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24450482

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare disorder with variable disease progression. To date, mutations in more than 20 different genes have been found. At present, PCD subtypes are described according to the ultrastructural defect on transmission electron microscopy (TEM) of the motile cilia. PCD with normal ultrastructure (NU) is rarely reported because it requires additional testing. Biallelic mutations in DNAH11 have been described as one cause of PCD with NU.The aim of our study was to describe the clinical characteristics of a large population of patients with PCD, in relation to the ultrastructural defect. Additionally, we aimed to demonstrate the need for biopsy and cell culture to reliably diagnose PCD, especially the NU subtype. METHODS: We retrospectively analyzed data from 206 patients with PCD. We compared the clinical characteristics, lung function, microbiology and imaging results of 68 patients with PCD and NU to those of 90 patients with dynein deficiencies and 41 patients with central pair abnormalities. In addition, we aimed to demonstrate the robustness of the diagnosis of the NU subtype in cell culture by data from genetic analysis. RESULTS: PCD with NU comprised 33% (68/206) of all patients with PCD. Compared to other subtypes, patients with PCD and NU had a similar frequency of upper and lower respiratory tract problems, as well as similar lung function and imaging. With the currently widely applied approach, without cell culture, the diagnosis would have been missed in 16% (11/68) of patients with NU. Genetic analysis was performed in 29/68 patients with PCD and NU, and biallelic mutations were found in 79% (23/29) of tested patients. CONCLUSIONS: We reported on the clinical characteristics of a large population of patients with PCD and NU. We have shown that systematic performance of biopsy and cell culture increases sensitivity to detect PCD, especially the subtype with NU.PCD with NU has similar clinical characteristics as other PCD types and requires biopsy plus ciliogenesis in culture for optimal diagnostic yield.


Asunto(s)
Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/epidemiología , Adolescente , Adulto , Niño , Preescolar , Cilios/patología , Cilios/ultraestructura , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión , Estudios Retrospectivos , Adulto Joven
12.
Nat Commun ; 5: 4418, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25048963

RESUMEN

Reduced generation of multiple motile cilia (RGMC) is a rare mucociliary clearance disorder. Affected persons suffer from recurrent infections of upper and lower airways because of highly reduced numbers of multiple motile respiratory cilia. Here we report recessive loss-of-function and missense mutations in MCIDAS-encoding Multicilin, which was shown to promote the early steps of multiciliated cell differentiation in Xenopus. MCIDAS mutant respiratory epithelial cells carry only one or two cilia per cell, which lack ciliary motility-related proteins (DNAH5; CCDC39) as seen in primary ciliary dyskinesia. Consistent with this finding, FOXJ1-regulating axonemal motor protein expression is absent in respiratory cells of MCIDAS mutant individuals. CCNO, when mutated known to cause RGMC, is also absent in MCIDAS mutant respiratory cells, consistent with its downstream activity. Thus, our findings identify Multicilin as a key regulator of CCNO/FOXJ1 for human multiciliated cell differentiation, and highlight the 5q11 region containing CCNO and MCIDAS as a locus underlying RGMC.


Asunto(s)
Proteínas de Ciclo Celular/genética , Trastornos de la Motilidad Ciliar/genética , Mutación , Proteínas Nucleares/genética , Adulto , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Cromosomas Humanos Par 5 , Cilios/patología , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/etiología , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Síndrome de Kartagener/genética , Masculino , Microscopía Electrónica de Transmisión , Depuración Mucociliar/genética , Proteínas Nucleares/metabolismo , Linaje , Factores de Transcripción , Adulto Joven
13.
Nat Genet ; 46(6): 646-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747639

RESUMEN

Using a whole-exome sequencing strategy, we identified recessive CCNO (encoding cyclin O) mutations in 16 individuals suffering from chronic destructive lung disease due to insufficient airway clearance. Respiratory epithelial cells showed a marked reduction in the number of multiple motile cilia (MMC) covering the cell surface. The few residual cilia that correctly expressed axonemal motor proteins were motile and did not exhibit obvious beating defects. Careful subcellular analyses as well as in vitro ciliogenesis experiments in CCNO-mutant cells showed defective mother centriole generation and placement. Morpholino-based knockdown of the Xenopus ortholog of CCNO also resulted in reduced MMC and centriole numbers in embryonic epidermal cells. CCNO is expressed in the apical cytoplasm of multiciliated cells and acts downstream of multicilin, which governs the generation of multiciliated cells. To our knowledge, CCNO is the first reported gene linking an inherited human disease to reduced MMC generation due to a defect in centriole amplification and migration.


Asunto(s)
Cilios/metabolismo , ADN Glicosilasas/genética , Síndrome de Kartagener/genética , Depuración Mucociliar/genética , Mutación , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Movimiento Celular , Centriolos/metabolismo , Niño , Preescolar , Citoplasma/metabolismo , Femenino , Humanos , Masculino , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Xenopus laevis
14.
Nat Genet ; 45(9): 995-1003, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872636

RESUMEN

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).


Asunto(s)
Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Cilios/genética , Cilios/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Cilios/ultraestructura , Modelos Animales de Enfermedad , Epéndimo/metabolismo , Epéndimo/patología , Técnicas de Silenciamiento del Gen , Orden Génico , Marcación de Gen , Humanos , Espacio Intracelular/metabolismo , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Unión Proteica , Transporte de Proteínas , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Pez Cebra
15.
J Hepatol ; 50(1): 150-7, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18992954

RESUMEN

BACKGROUND/AIMS: Primary sclerosing cholangitis (PSC) is a progressive cholestatic disease commonly associated with inflammatory bowel disease (IBD) and characterized by fibrosing inflammatory destruction of bile ducts. The histological features in the liver of PSC patients are similar to those observed in cystic fibrosis (CF). Our aim was to study whether variants in the CFTR gene are associated with the occurrence and/or evolution of PSC. METHODS: PSC patients (n=140) were genotyped for F508del, the TGmTn variants, and four additional polymorphic loci (1001+11 C>T, M470V, T854T and Q1463Q), and compared to 136 matched healthy controls. RESULTS: The 1540G-allele, encoding V470, was less frequent in PSC (52%) than in controls (64%, p=0.003), and was associated with protection against PSC in individuals without IBD (OR 0.25, 95% CI 0.12-0.52, p=0.0002). Also TG11-T7 was less frequent in PSC (53%) than in controls (61%, p=0.04), this haplotype was associated with reduced risk for PSC (OR 0.34, 95% CI 0.17-0.70, p=0.003) in individuals without IBD. CONCLUSIONS: In this cohort of PSC patients, several CFTR-variants affecting the functional properties of the CFTR protein seem to offer protection against the development of PSC, confirming our hypothesis that CFTR might be implicated in the pathogenesis of PSC.


Asunto(s)
Colangitis Esclerosante/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Polimorfismo Genético/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Am J Respir Crit Care Med ; 165(6): 757-61, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11897640

RESUMEN

The incidence of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in children with intermediate sweat chloride levels is unknown. The results of 2,349 sweat tests performed at two Belgian university hospitals were reviewed. Intermediate chloride concentrations were observed in 98 subjects (4.2%), 68 being younger than 18 years of age. Forty-three children could be traced and their parents agreed to take part in the study. Exhaustive analysis of the CFTR gene disclosed a total of 24 putative mutations (27.9%). Three subjects were found to carry only one CFTR mutation, whereas 10 harbored one mutation on both CFTR genes. These 10 children were investigated in detail. At the time of writing, the mean age (+/-SD) of this group is 8.9 years (+/-4.2 years). Nine children are pancreatic sufficient. Three have been asymptomatic for more than two years, whereas the others display, to different degrees, clinical features suggestive of CF. The sweat chloride concentration is slightly higher in this group (39.4 +/- 5.4 mM) than in subjects without CFTR mutation (35.2 +/- 4.4 mM, p < 0.05). The nasal potential difference was abnormal in five of the nine subjects tested. In this study, 23% of children displaying intermediate sweat chloride levels were found to carry a putative mutation on both CFTR genes.


Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/epidemiología , Mutación , Sudor/química , Adolescente , Bélgica/epidemiología , Niño , Preescolar , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Femenino , Humanos , Incidencia , Masculino , Potenciales de la Membrana , Estadísticas no Paramétricas
17.
Biochem Biophys Res Commun ; 304(2): 248-52, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12711306

RESUMEN

Using the patch-clamp method, we investigated a relationship between MDR1 expression and its effects on the CFTR channel function. Incubation of CaCo-2 cells with increasing concentrations of doxorubicin resulted in a reduction of CFTR chloride channel activity in a dose-dependent manner. This reduction was associated with a decrease of CFTR mRNA and simultaneous up-regulation of MDR1 mRNA in the presence of doxorubicin. Similar alteration of the CFTR function was observed in CaCo-2 cells transiently overexpressing MDR1. No alterations of the cAMP-dependent chloride currents were observed in COS-1 cells transiently co-expressing CFTR and MDR1 from strong CMV promoters. This indicated that repression of CFTR by MDR1 induction requires the presence of the native CFTR promoter.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Células COS , Células CACO-2 , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Doxorrubicina/farmacología , Conductividad Eléctrica , Expresión Génica , Humanos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA