RESUMEN
Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.
Asunto(s)
Adaptación Fisiológica , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fluorescencia , Simulación del Acoplamiento Molecular , Membrana Nuclear/metabolismo , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Dominios Proteicos , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Asunto(s)
Centrosoma/ultraestructura , Regulación Fúngica de la Expresión Génica , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Cuerpos Polares del Huso/ultraestructura , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteoma/genética , Proteoma/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMEN
Meiotic pairing in the nematode Caenorhabditis elegans is facilitated by chromosomal sites known as pairing centers that are tethered to the nuclear envelope. Sato et al. (2009) and Penkner et al. (2009) provide insight into how proteins linking pairing centers and the microtubule cytoskeleton mediate homolog pairing and restrict synapsis to homologous pairs of chromosomes.
Asunto(s)
Caenorhabditis elegans/citología , Emparejamiento Cromosómico , Meiosis , Microtúbulos/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromosomas/metabolismo , Membrana Nuclear/metabolismoRESUMEN
Changes in medical intervention over the last decade have improved outcomes for individuals with trisomy 18, the second most common human aneuploidy syndrome at birth. As children with trisomy 18 live longer, a shared concern of medical experts and parents is the occurrence and treatment of seizures. Previously published surveillance guidelines for this condition have not addressed seizure management. Using parent-reported data collected as part of the Tracking Rare Incidence Syndromes project, we report on the prevalence, course, and management of seizures in individuals with trisomy 18. Twenty-eight percent (52/186) of individuals diagnosed with trisomy 18 in our retrospective cohort experienced generalized, focal, or mixed seizures at some point in their lifetime. For many individuals, seizures were effectively managed by broad-spectrum anti-seizure medications. Correlation analysis showed that focal and generalized seizures were more likely to occur in individuals who had previously experienced infantile spasms or central apnea. Electroencephalogram testing should be considered as part of a standard screening approach in individuals with trisomy 18 to enable early diagnosis and treatment of seizures. An international registry that incorporates parent-reported and clinical data for patients with trisomy 18 may facilitate ongoing research and recruitment into clinical trials for seizure management.
Asunto(s)
Anticonvulsivantes , Espasmos Infantiles , Niño , Recién Nacido , Humanos , Anticonvulsivantes/uso terapéutico , Síndrome de la Trisomía 18/tratamiento farmacológico , Prevalencia , Estudios RetrospectivosRESUMEN
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.
Asunto(s)
ADN Polimerasa II/metabolismo , Mitosis/fisiología , Factor B de Elongación Transcripcional Positiva/metabolismo , Elongación de la Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Células HEK293 , Células HeLa , HumanosRESUMEN
Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids 'rescues' SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes.
Asunto(s)
Centrómero/genética , Cromosomas Fúngicos/genética , Diploidia , Dosificación de Gen , Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Saccharomyces cerevisiae , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/metabolismoRESUMEN
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Animales , Núcleo Celular/genética , Humanos , Transporte de Proteínas , ProteostasisRESUMEN
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/metabolismo , Efectos de la Posición Cromosómica , Silenciador del Gen , Genes Fúngicos , Estudio de Asociación del Genoma Completo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Metilación , Acetiltransferasa A N-Terminal , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/genética , Telómero/metabolismoRESUMEN
To identify regulators involved in determining the differential pattern of H3K79 methylation by Dot1, we screened the entire yeast gene deletion collection by GPS for genes required for normal levels of H3K79 di- but not trimethylation. We identified the cell cycle-regulated SBF protein complex required for H3K79 dimethylation. We also found that H3K79 di- and trimethylation are mutually exclusive, with M/G1 cell cycle-regulated genes significantly enriched for H3K79 dimethylation. Since H3K79 trimethylation requires prior monoubiquitination of H2B, we performed genome-wide profiling of H2BK123 monoubiquitination and showed that H2BK123 monoubiquitination is not detected on cell cycle-regulated genes and sites containing H3K79me2, but is found on H3K79me3-containing regions. A screen for genes responsible for the establishment/removal of H3K79 dimethylation resulted in identification of NRM1 and WHI3, both of which impact the transcription by the SBF and MBF protein complexes, further linking the regulation of methylation status of H3K79 to the cell cycle.
Asunto(s)
Ciclo Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ciclo Celular/genética , ADN Intergénico , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Lisina , Metilación , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras/genética , UbiquitinaciónRESUMEN
Duplication of centrosomes once per cell cycle is essential for bipolar spindle formation and genome maintenance and is controlled in part by cyclin-dependent kinases (Cdks). Our study identifies Sfi1, a conserved component of centrosomes, as the first Cdk substrate required to restrict centrosome duplication to once per cell cycle. We found that reducing Cdk1 phosphorylation by changing Sfi1 phosphorylation sites to nonphosphorylatable residues leads to defects in separation of duplicated spindle pole bodies (SPBs, yeast centrosomes) and to inappropriate SPB reduplication during mitosis. These cells also display defects in bipolar spindle assembly, chromosome segregation, and growth. Our findings lead to a model whereby phosphoregulation of Sfi1 by Cdk1 has the dual function of promoting SPB separation for spindle formation and preventing premature SPB duplication. In addition, we provide evidence that the protein phosphatase Cdc14 has the converse role of activating licensing, likely via dephosphorylation of Sfi1.
Asunto(s)
Proteínas de Ciclo Celular/genética , Centrosoma , Proteínas Tirosina Fosfatasas/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Cuerpos Polares del Huso/genética , Proteína Quinasa CDC2/genética , Duplicación Cromosómica/genética , Segregación Cromosómica/genética , Mitosis/genética , Fosforilación , Saccharomyces cerevisiae/genética , Huso Acromático/genéticaRESUMEN
DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.
Asunto(s)
Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas Genéticas , Proteínas de la Membrana/metabolismo , Microscopía , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Ubiquitina-Proteína LigasasRESUMEN
Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm's C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo's interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Fosforilación/fisiología , Unión Proteica/fisiología , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Espectrometría de FluorescenciaRESUMEN
We report the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography, we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length grow according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that two nMTs attach to each kinetochore in A. gossypii and not only one nMT like in S. cerevisiae.
Asunto(s)
Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico/métodos , Eremothecium/metabolismo , Eremothecium/ultraestructura , Hifa/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/ultraestructura , Hifa/ultraestructura , Microtúbulos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructuraRESUMEN
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de la Membrana/genética , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Proliferación Celular , Homeostasis , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype. We determined that deletion and overexpression of spindle-related genes are detrimental to the growth of strains with two chromosomes, suggesting that mega chromosomes exert altered demands on the spindle. Using confocal microscopy, we demonstrate that cells with fewer but longer chromosomes have smaller spindle pole bodies, fewer microtubules, and longer spindles. Moreover, using electron tomography and confocal imaging, we observe elongated, bent anaphase spindles with fewer core microtubules in strains with mega chromosomes. Cells harboring mega chromosomes grow more slowly, are delayed in mitosis, and a subset struggle to complete chromosome segregation. We propose that the karyotype of the cell dictates the microtubule number, type, spindle pole body size, and spindle length, subsequently influencing the dynamics of mitosis, such as the rate of spindle elongation and the velocity of pole separation. Taken together, our results suggest that mitotic spindles are highly plastic ultrastructures that can accommodate and adjust to a variety of karyotypes, even within a species.
Asunto(s)
Saccharomyces cerevisiae , Huso Acromático , Huso Acromático/metabolismo , Saccharomyces cerevisiae/genética , Microtúbulos/metabolismo , Segregación Cromosómica , Mitosis , Cromosomas Fúngicos/genética , CariotipoRESUMEN
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that mediate nuclear compartmentalization. NPCs undergo large-scale structural rearrangements during mitosis in metazoans and some fungi. However, our understanding of NPC remodeling beyond mitosis remains limited. Using time-lapse fluorescence microscopy, we discovered that NPCs undergo two mechanistically separable remodeling events during budding yeast meiosis in which parts or all of the nuclear basket transiently dissociate from the NPC core during meiosis I and II, respectively. Meiosis I detachment, observed for Nup60 and Nup2, is driven by Polo kinase-mediated phosphorylation of Nup60 at its interface with the Y-complex. Subsequent reattachment of Nup60-Nup2 to the NPC core is facilitated by a lipid-binding amphipathic helix in Nup60. Preventing Nup60-Nup2 reattachment causes misorganization of the entire nuclear basket in gametes. Strikingly, meiotic nuclear basket remodeling also occurs in the distantly related fission yeast, Schizosaccharomyces pombe. Our study reveals a conserved and developmentally programmed aspect of NPC plasticity, providing key mechanistic insights into the nuclear basket organization.
Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Meiosis , Mitosis , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/química , Schizosaccharomyces , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Defining the proteome of any given subcellular compartment provides insight into the activities and functions within that organelle. Understanding the composition of the nuclear envelope (NE) using traditional methods such as biochemical subcellular fractionation has been challenging due to the continuity of the NE and the endoplasmic reticulum. Here, we describe how split green fluorescent protein (split-GFP) was adapted to determine and define the NE proteome. This system is able to resolve protein topology and distinguish localization to the inner or outer nuclear membranes (INM or ONM).
Asunto(s)
Membrana Nuclear , Proteoma , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía , Membrana Nuclear/metabolismo , Proteoma/metabolismoRESUMEN
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cuerpos Polares del Huso/metabolismoRESUMEN
The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication.