Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 39(2): 435-450, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35606662

RESUMEN

Mitochondrial metabolism and function are modulated by changes in matrix Ca2+. Small increases in the matrix Ca2+ stimulate mitochondrial bioenergetics, whereas excessive Ca2+ leads to cell death by causing massive matrix swelling and impairing the structural and functional integrity of mitochondria. Sustained opening of the non-selective mitochondrial permeability transition pores (PTP) is the main mechanism responsible for mitochondrial Ca2+ overload that leads to mitochondrial dysfunction and cell death. Recent studies suggest the existence of two or more types of PTP, and adenine nucleotide translocator (ANT) and FOF1-ATP synthase were proposed to form the PTP independent of each other. Here, we elucidated the role of ANT in PTP opening by applying both experimental and computational approaches. We first developed and corroborated a detailed model of the ANT transport mechanism including the matrix (ANTM), cytosolic (ANTC), and pore (ANTP) states of the transporter. Then, the ANT model was incorporated into a simple, yet effective, empirical model of mitochondrial bioenergetics to ascertain the point when Ca2+ overload initiates PTP opening via an ANT switch-like mechanism activated by matrix Ca2+ and is inhibited by extra-mitochondrial ADP. We found that encoding a heterogeneous Ca2+ response of at least three types of PTPs, weakly, moderately, and strongly sensitive to Ca2+, enabled the model to simulate Ca2+ release dynamics observed after large boluses were administered to a population of energized cardiac mitochondria. Thus, this study demonstrates the potential role of ANT in PTP gating and proposes a novel mechanism governing the cryptic nature of the PTP phenomenon.


Asunto(s)
Nucleótidos de Adenina , Proteínas de Transporte de Membrana Mitocondrial , Nucleótidos de Adenina/metabolismo , Dilatación Mitocondrial , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Calcio/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216368

RESUMEN

Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.


Asunto(s)
Mitocondrias Cardíacas/fisiología , Músculo Esquelético/fisiología , Miocitos Cardíacos/fisiología , Animales , Respiración de la Célula/fisiología , Metabolismo Energético/fisiología , Humanos
3.
Angew Chem Int Ed Engl ; 60(21): 11784-11788, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33684237

RESUMEN

Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 µm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol µmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.


Asunto(s)
Ferroptosis/fisiología , Peroxidación de Lípido/fisiología , Fosfatidiletanolaminas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Carbolinas/farmacología , Línea Celular , Ferroptosis/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Espectrometría de Masa de Ion Secundario/métodos
4.
Cell Physiol Biochem ; 54(6): 1101-1114, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33119220

RESUMEN

BACKGROUND/AIMS: Structural and functional alterations in mitochondria, particularly, the inner mitochondrial membrane (IMM) plays a critical role in mitochondria-mediated cell death in response to cardiac ischemia-reperfusion (IR) injury. The integrity of IMM can be affected by two potential intra-mitochondrial factors: i) mitochondrial matrix swelling, and ii) proteolytic cleavage of the long optic atrophy type 1 (L-OPA1), an IMM-localized dynamin-like GTPase engaged in the regulation of structural organization and integrity of the mitochondrial cristae. However, the relationship between these two factors in response to oxidative stress remains unclear. Here, we elucidated the effects of cardiac IR injury on L-OPA1 cleavage and OMA1 activity. METHODS: Langendorff-mode perfused isolated rat hearts were subjected to 25-min of global ischemia followed by 90-min reperfusion in the presence or absence of XJB-5-131 (XJB, a mitochondria-targeting ROS scavenger) and sanglifehrin A (SfA, a permeability transition pore inhibitor). RESULTS: XJB in combination with SfA increased post-ischemic recovery of cardiac function and reduced mitochondrial ROS production at 30- and 60-min reperfusion and affected mitochondrial swelling. L-OPA1 levels were reduced in IR hearts; however, neither XJB, SfA, and their combination prevented IR-induced reduction of L-OPA1 cleavage. Likewise, IR increased the OMA1 enzymatic activity, which remained unchanged in the presence of XJB and/or SfA. CONCLUSION: IR-induced cardiac and mitochondrial dysfunctions are associated with OMA1 activation and L-OPA1 cleavage. However, XJB, SfA, and their combination do not prevent these changes despite improved heart and mitochondria function, thus, suggesting that different mechanisms can be implicated in L-OPA1 processing in response to cardiac IR injury.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Proteolisis , Animales , Masculino , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley
5.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106430

RESUMEN

: Mitochondrial respiratory chain supercomplexes (RCS), particularly, the respirasome, which contains complexes I, III, and IV, have been suggested to participate in facilitating electron transport, reducing the production of reactive oxygen species (ROS), and maintaining the structural integrity of individual electron transport chain (ETC) complexes. Disassembly of the RCS has been observed in Barth syndrome, neurodegenerative and cardiovascular diseases, diabetes mellitus, and aging. However, the physiological role of RCS in high energy-demanding tissues such as the heart remains unknown. This study elucidates the relationship between RCS assembly and cardiac function. Adult male Sprague Dawley rats underwent Langendorff retrograde perfusion in the presence and absence of ethanol, isopropanol, or rotenone (an ETC complex I inhibitor). We found that ethanol had no effects on cardiac function, whereas rotenone reduced heart contractility, which was not recovered when rotenone was excluded from the perfusion medium. Blue native polyacrylamide gel electrophoresis revealed significant reductions of respirasome levels in ethanol- or rotenone-treated groups compared to the control group. In addition, rotenone significantly increased while ethanol had no effect on mitochondrial ROS production. In isolated intact mitochondria in vitro, ethanol did not affect respirasome assembly; however, acetaldehyde, a byproduct of ethanol metabolism, induced dissociation of respirasome. Isopropanol, a secondary alcohol which was used as an alternative compound, had effects similar to ethanol on heart function, respirasome levels, and ROS production. In conclusion, ethanol and isopropanol reduced respirasome levels without any noticeable effect on cardiac parameters, and cardiac function is not susceptible to moderate reductions of RCS.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Corazón/fisiología , Mitocondrias Cardíacas/metabolismo , 2-Propanol/farmacología , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Etanol/farmacología , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Contracción Miocárdica , Multimerización de Proteína , Ratas , Ratas Sprague-Dawley , Rotenona/farmacología
6.
Am J Physiol Heart Circ Physiol ; 316(6): H1426-H1438, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978131

RESUMEN

A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.


Asunto(s)
Angiotensina II/metabolismo , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Animales , Humanos , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
7.
J Cell Physiol ; 233(7): 5310-5321, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215716

RESUMEN

Mitochondria play an important role in both cell survival and cell death. In response to oxidative stress, they undergo opening of non-selective permeability transition pores (PTP) in the inner mitochondrial membrane. Sustained PTP opening triggers mitochondrial swelling due to increased colloidal osmotic pressure in the matrix accompanied by mitochondrial membrane depolarization and ATP hydrolysis. Mitochondrial swelling is the major factor leading to mitochondria-mediated cell death through both apoptosis and necrosis. Hence, precise estimation of the threshold parameters of the transition of reversible swelling to irreversible swelling is important for understanding the mechanisms of PTP-mediated cell death as well as for the development of new therapeutic approaches targeting the mitochondria under pathological conditions. In this study, we designed a simple kinetic model of the Ca2+ -induced mitochondrial swelling that describes the mechanisms of transition from reversible to irreversible swelling in cardiac mitochondria. Values of kinetic parameters calculated using parameter estimation techniques that fit experimental data of mitochondrial swelling with minimum average differences between the experimental data and model parameters. Overall, this study provides a kinetic model verified by data simulation and model fitting that adequately describes the dynamics of mitochondrial swelling.


Asunto(s)
Permeabilidad de la Membrana Celular/genética , Mitocondrias Cardíacas/genética , Dilatación Mitocondrial/genética , Miocardio/metabolismo , Animales , Apoptosis/genética , Calcio/química , Muerte Celular/genética , Supervivencia Celular/genética , Corazón/fisiología , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Necrosis/genética , Presión Osmótica , Estrés Oxidativo/genética , Porosidad , Ratas
8.
Pflugers Arch ; 470(9): 1391-1403, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29748710

RESUMEN

Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.


Asunto(s)
Angiotensina II/metabolismo , Corazón/fisiología , Mitocondrias/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Corazón/efectos de los fármacos , Losartán/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Cell Physiol Biochem ; 50(1): 288-303, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282073

RESUMEN

BACKGROUND/AIMS: The mitochondrial permeability transition pore opening plays a critical role in the pathogenesis of myocardial infarction. Inhibition of cyclophilin-D (CyP-D), a key regulator of the mitochondrial permeability transition pore, has been shown to exert cardioprotective effects against ischemia-reperfusion injury on various animal models, mostly in males. However, failure of recent clinical trials requires a detailed elucidation of the cardioprotective efficacy of CyP-D inhibition. The aim of this study was to examine whether cardioprotective effects of sanglifehrin A, a potent inhibitor of CyP-D, on post-infarcted hearts depends on reperfusion. METHODS: Acute or chronic myocardial infarction was induced by coronary artery ligation with/without subsequent reperfusion for 2 and 28 days in female Sprague-Dawley rats. Cardiac function was estimated by echocardiography. Oxygen consumption rates, ROS production, permeability transition pore opening, protein carbonylation and respiratory supercomplexes were analyzed in isolated cardiac mitochondria. RESULTS: Sanglifehrin A significantly improved cardiac function of reperfused hearts at 2 days but failed to protect after 28 days. No protection was observed in non-reperfused post-infarcted hearts. The respiratory control index of mitochondria was significantly reduced in reperfused infarcted hearts at 2-days with no effect at 28-days post-infarction on reperfused and non-reperfused hearts. Likewise, only a minor increase in reactive oxygen species production was observed at 2-days in non-reperfused post-infarcted hearts. CONCLUSION: This study demonstrates that CyP-D inhibition exerts cardioprotective effects in reperfused but not in non-reperfused infarcted hearts of female rats, and the effects are observed only during acute post-infarction injury.


Asunto(s)
Ciclofilinas/antagonistas & inhibidores , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Acetilación , Enfermedad Aguda , Animales , Enfermedad Crónica , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Ecocardiografía , Femenino , Lactonas/farmacología , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/veterinaria , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Compuestos de Espiro/farmacología
10.
Cell Mol Life Sci ; 74(15): 2795-2813, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28378042

RESUMEN

Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.


Asunto(s)
Cardiotónicos/farmacología , Ciclofilinas/metabolismo , Descubrimiento de Drogas , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Animales , Calcio/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Terapia Molecular Dirigida , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos
11.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400386

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Cardiomiopatías/tratamiento farmacológico , Cardiotónicos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/prevención & control , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Antiinflamatorios/uso terapéutico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Bezafibrato/uso terapéutico , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transducción de Señal
12.
Molecules ; 23(4)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29597314

RESUMEN

Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.


Asunto(s)
Simulación por Computador , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Presión Osmótica , Humanos
13.
Biochim Biophys Acta Bioenerg ; 1858(6): 418-431, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28279675

RESUMEN

Mitochondria are major producers of reactive oxygen species (ROS) in many cells including cancer cells. However, complex interrelationships between mitochondrial ROS (mitoROS), mitochondrial membrane potential (ΔΨm) and Ca2+ are not completely understood. Using human carcinoma cells, we further highlight biphasic ROS dynamics: - gradual mitoROS increase followed by mitoROS flash. Also, we demonstrate heterogeneity in rates of mitoROS generation and flash initiation time. Comparing mitochondrial and near-extra-mitochondrial signals, we show that mechanisms of mitoROS flashes in single mitochondria, linked to mitochondrial permeability transition pore opening (ΔΨm collapse) and calcium sparks, may involve flash triggering by certain levels of external ROS released from the same mitochondria. In addition, mitochondria-mitochondria interactions can produce wave propagations of mitoROS flashes and ΔΨm collapses in cancer cells similar to phenomena of ROS-induced ROS release (RIRR). Our data suggest that in cancer cells RIRR, activation of mitoROS flashes and mitochondrial depolarization may involve participation of extramitochondrial-ROS produced either by individual mitochondria and/or by neighboring mitochondria. This could represent general mechanisms in ROS-ROS signaling with suggested role in both mitochondrial and cellular physiology and signaling.


Asunto(s)
Adenocarcinoma/patología , Señalización del Calcio , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Neoplasias del Colon/patología , Ciclosporina/farmacología , Fluoresceínas/química , Humanos , Microscopía Confocal , Microscopía Fluorescente , Mitocondrias/efectos de la radiación , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Fotoquímica , Proteínas Recombinantes/metabolismo , Rodaminas/química , Análisis de la Célula Individual , Superóxido Dismutasa/metabolismo
14.
Arch Biochem Biophys ; 630: 1-8, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28736227

RESUMEN

Although mitochondrial Ca2+ overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca2+ and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca2+ in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca2+ exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca2+. However, incubation of mitochondria in the presence of high Ca2+ (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca2+ but not ROS. TBH has no effect on the respirasome while Ca2+ induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley , terc-Butilhidroperóxido/farmacología
15.
Clin Exp Pharmacol Physiol ; 44(12): 1201-1212, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28707739

RESUMEN

Angiotensin II-preconditioning (APC) has been shown to reproduce the cardioprotective effects of ischaemic preconditioning (IPC), however, the molecular mechanisms mediating the effects of APC remain unknown. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC or both (IPC/APC) followed by ischaemia-reperfusion (IR), to determine translocation of PKCε, PKCδ, Akt, Erk1/2, JNK, p38 MAPK and GSK-3ß to mitochondria as an indicator of activation of the protein kinases. In agreement with previous observations, IPC, APC and IPC/APC increased the recovery of left ventricular developed pressure (LVDP), reduced infarct size (IS) and lactate dehydrogenase (LDH) release, compared to controls. These effects were associated with increased mitochondrial PKCε/PKCδ ratio, Akt, Erk1/2, JNK, and inhibition of permeability transition pore (mPTP) opening. Chelerythrine, a pan-PKC inhibitor, abolished the enhancements of PKCε but increased PKCδ expression, and inhibited Akt, Erk1/2, and JNK protein levels. The drug had no effect on the APC- and IPC/APC-induced cardioprotection as previously reported, but enhanced the post-ischaemic LVDP in controls. Losartan, an angiotensin II type 1 receptor (AT1-R) blocker, abolished the APC-stimulated increase of LVDP and reduced PKCε, Akt, Erk1/2, JNK, and p38. Both drugs reduced ischaemic contracture and LDH release, and abolished the inhibition of mPTP by the preconditioning. Chelerythrine also prevented the reduction of IS by APC and IPC/APC. These results suggest that the cardioprotection induced by APC and IPC/APC involves an AT1-R-dependent translocation of PKCε and survival kinases to the mitochondria leading to mPTP inhibition. In chelerythrine-treated hearts, however, alternate mechanisms appear to maintain cardiac function.


Asunto(s)
Angiotensina II/farmacología , Precondicionamiento Isquémico Miocárdico/métodos , Mitocondrias Cardíacas/efectos de los fármacos , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Animales , Benzofenantridinas/farmacología , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley
16.
Biochim Biophys Acta ; 1853(2): 276-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450968

RESUMEN

Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia-reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia-reperfusion injury.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias/metabolismo , Oxígeno/farmacología , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Western Blotting , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Ratas , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo
17.
Muscle Nerve ; 53(6): 958-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26598963

RESUMEN

INTRODUCTION: Diabetes is associated with accelerated loss of muscle mass and function. We compared the contractile properties of single muscle fibers in young rat soleus muscle of uncontrolled streptozotocin-induced diabetic animals (n = 10) and nondiabetic controls (n = 10). METHODS: Single fiber maximal force, shortening velocity, and power were assessed during maximal activation with calcium using the slack test 4 weeks after induction. Myosin heavy chain expression was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Oxidized myosin levels were detected by analyzing protein carbonyls in muscle homogenates. All fibers expressed the type I myosin heavy chain isoform. RESULTS: Diabetic rats had higher blood glucose (537 vs. 175 mg/dl; P < 0.001) and lower body weight (171 vs. 356 g; P < 0.001) than controls. Muscle fibers from diabetic rats showed smaller cross-sectional area (1128 vs. 1812 µm(2) ), lower maximal force (258 vs. 492 µN), and reduced absolute power (182 vs. 388 µN FL/s) (all P < 0.0001). No differences were seen in shortening velocity, specific force or specific power. Myosin carbonylation was higher (P < 0.01) in diabetic rats. CONCLUSIONS: After 4 weeks of untreated diabetes, there are significant alterations in muscle at the level of isolated single fibers and myosin protein, although some contractile properties seem to be protected. Muscle Nerve, 2015 Muscle Nerve 53: 958-964, 2016.


Asunto(s)
Diabetes Mellitus Experimental/patología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiopatología , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Carbonilación Proteica , Ratas , Ratas Sprague-Dawley
18.
Am J Physiol Heart Circ Physiol ; 308(7): H749-58, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25617357

RESUMEN

AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.


Asunto(s)
Adenilato Quinasa/metabolismo , Antioxidantes/farmacología , Ciclofilinas/metabolismo , Activadores de Enzimas/farmacología , Metformina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/metabolismo , Adenilato Quinasa/antagonistas & inhibidores , Animales , Compuestos de Bifenilo , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Oxidantes/farmacología , PPAR alfa/antagonistas & inhibidores , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Pironas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología
19.
J Pharm Pharm Sci ; 18(3): 547-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517140

RESUMEN

Cardiac ischemia-reperfusion stimulates the renin-angiotensin system (RAS) associated with elevated levels of circulating angiotensin II. Numerous studies demonstrate that the antagonist for the angiotensin II type 1 receptor, losartan improves cardiac function in animal models of ischemia-reperfusion. Molecular mechanisms of the cardioprotective effects of RAS inhibitors on cardiac ischemia-reperfusion remain poorly understood, and are not associated with the anti-hypertensive action of these drugs. This Commentary focuses on the study published in the Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18:112-123, that elucidates the role of SIRT3 in the cardioprotective action of losartan against ischemic-reperfusion injury. We provide comprehensive discussion of the role of mitochondria in the cardioprotective effects of losartan through SIRT3. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Cardiotónicos/administración & dosificación , Losartán/administración & dosificación , Daño por Reperfusión Miocárdica/prevención & control , Sirtuina 3/fisiología , Proteínas ras/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Resultado del Tratamiento , Proteínas ras/metabolismo
20.
J Mol Cell Cardiol ; 77: 136-46, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25451170

RESUMEN

Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.


Asunto(s)
Cardiotónicos/farmacología , Óxidos N-Cíclicos/farmacología , Depuradores de Radicales Libres/farmacología , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Peróxido de Hidrógeno/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Consumo de Oxígeno , Ratas Endogámicas F344 , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA