Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 298(10): 102325, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926710

RESUMEN

Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed 'deep', since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, 'proximal' SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Neuritas , Proyección Neuronal , Proteómica , Receptor Cannabinoide CB1 , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos , Transducción de Señal , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Humanos
2.
Proc Natl Acad Sci U S A ; 107(3): 1247-52, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080566

RESUMEN

Cells often mount ultrasensitive (switch-like) responses to stimuli. The design principles underlying many switches are not known. We computationally studied the switching behavior of GTPases, and found that this first-order kinetic system can show ultrasensitivity. Analytical solutions indicate that ultrasensitive first-order reactions can yield switches that respond to signal amplitude or duration. The three-component GTPase system is analogous to the physical fermion gas. This analogy allows for an analytical understanding of the functional capabilities of first-order ultrasensitive systems. Experiments show amplitude- and time-dependent Rap GTPase switching in response to Cannabinoid-1 receptor signal. This first-order switch arises from relative reaction rates and the concentrations ratios of the activator and deactivator of Rap. First-order ultrasensitivity is applicable to many systems where threshold for transition between states is dependent on the duration, amplitude, or location of a distal signal. We conclude that the emergence of ultrasensitivity from coupled first-order reactions provides a versatile mechanism for the design of biochemical switches.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Cinética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal
3.
Front Pharmacol ; 14: 1158222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101545

RESUMEN

Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes. Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were quantified using mRNA-seq, changes in gene expression were integrated into a mechanistic mathematical model of electrophysiology and contraction, and simulation results were used to predict physiological outcomes. Results: Experimental recordings of action potentials, intracellular calcium, and contraction in iPSC-CMs demonstrated that modeling predictions were accurate, with 81% of modeling predictions across the two cell lines confirmed experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would respond to an additional arrhythmogenic insult, namely, hypokalemia, predicted dramatic differences between cell lines in how drugs affected arrhythmia susceptibility, and these predictions were confirmed experimentally. Computational analysis revealed that differences between cell lines in the upregulation or downregulation of particular ion channels could explain how TKI-treated cells responded differently to hypokalemia. Discussion: Overall, the study identifies transcriptional mechanisms underlying cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating transcriptomics with mechanistic mathematical models to generate experimentally testable, individual-specific predictions of adverse event risk.

4.
Front Mol Neurosci ; 16: 1183315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692100

RESUMEN

Introduction: Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods: We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results: The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion: By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.

5.
Sci Data ; 9(1): 18, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058449

RESUMEN

Drug Toxicity Signature Generation Center (DToxS) at the Icahn School of Medicine at Mount Sinai is one of the centers for the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Its key aim is to generate proteomic and transcriptomic signatures that can predict cardiotoxic adverse effects of kinase inhibitors approved by the Food and Drug Administration. Towards this goal, high throughput shotgun proteomics experiments (308 cell line/drug combinations +64 control lysates) have been conducted. Using computational network analyses, these proteomic data can be integrated with transcriptomic signatures, generated in tandem, to identify cellular signatures of cardiotoxicity that may predict kinase inhibitor-induced toxicity and enable possible mitigation. Both raw and processed proteomics data have passed several quality control steps and been made publicly available on the PRIDE database. This broad protein kinase inhibitor-stimulated human cardiomyocyte proteomic data and signature set is valuable for prediction of drug toxicities.


Asunto(s)
Antineoplásicos , Proteómica , Antineoplásicos/farmacología , Cardiotoxicidad , Humanos , Inhibidores de Proteínas Quinasas/efectos adversos , Transcriptoma
6.
Stem Cell Reports ; 16(12): 3036-3049, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34739849

RESUMEN

A library of well-characterized human induced pluripotent stem cell (hiPSC) lines from clinically healthy human subjects could serve as a useful resource of normal controls for in vitro human development, disease modeling, genotype-phenotype association studies, and drug response evaluation. We report generation and extensive characterization of a gender-balanced, racially/ethnically diverse library of hiPSC lines from 40 clinically healthy human individuals who range in age from 22 to 61 years. The hiPSCs match the karyotype and short tandem repeat identities of their parental fibroblasts, and have a transcription profile characteristic of pluripotent stem cells. We provide whole-genome sequencing data for one hiPSC clone from each individual, genomic ancestry determination, and analysis of mendelian disease genes and risks. We document similar transcriptomic profiles, single-cell RNA-sequencing-derived cell clusters, and physiology of cardiomyocytes differentiated from multiple independent hiPSC lines. This extensive characterization makes this hiPSC library a valuable resource for many studies on human biology.


Asunto(s)
Salud , Células Madre Pluripotentes Inducidas/citología , Adulto , Señalización del Calcio , Diferenciación Celular , Línea Celular , Células Clonales , Etnicidad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factores de Riesgo , Adulto Joven
7.
Nat Commun ; 11(1): 4809, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968055

RESUMEN

Kinase inhibitors (KIs) represent an important class of anti-cancer drugs. Although cardiotoxicity is a serious adverse event associated with several KIs, the reasons remain poorly understood, and its prediction remains challenging. We obtain transcriptional profiles of human heart-derived primary cardiomyocyte like cell lines treated with a panel of 26 FDA-approved KIs and classify their effects on subcellular pathways and processes. Individual cardiotoxicity patient reports for these KIs, obtained from the FDA Adverse Event Reporting System, are used to compute relative risk scores. These are then combined with the cell line-derived transcriptomic datasets through elastic net regression analysis to identify a gene signature that can predict risk of cardiotoxicity. We also identify relationships between cardiotoxicity risk and structural/binding profiles of individual KIs. We conclude that acute transcriptomic changes in cell-based assays combined with drug substructures are predictive of KI-induced cardiotoxicity risk, and that they can be informative for future drug discovery.


Asunto(s)
Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Perfilación de la Expresión Génica/métodos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , Transcriptoma , Antineoplásicos/farmacología , Cardiotoxicidad/tratamiento farmacológico , Línea Celular , Relación Dosis-Respuesta a Droga , Aprobación de Drogas , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Análisis de Regresión , Medición de Riesgo , Factores de Riesgo , Alineación de Secuencia , Estados Unidos , United States Food and Drug Administration
8.
Mol Oncol ; 13(8): 1725-1743, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31116490

RESUMEN

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA-approved drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six-gene signatures for allopurinol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 was verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient-derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.


Asunto(s)
Alopurinol/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Genómica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Análisis de Sistemas , Alopurinol/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Triazoles/farmacología , Triazoles/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 10(1): 2061, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053734

RESUMEN

Nephrotoxicity is a critical adverse event that leads to discontinuation of kinase inhibitor (KI) treatment. Here we show, through meta-analyses of FDA Adverse Event Reporting System, that dasatinib is associated with high risk for glomerular toxicity that is uncoupled from hypertension, suggesting a direct link between dasatinib and podocytes. We further investigate the cellular effects of dasatinib and other comparable KIs with varying risks of nephrotoxicity. Dasatinib treated podocytes show significant changes in focal adhesions, actin cytoskeleton, and morphology that are not observed with other KIs. We use phosphoproteomics and kinome profiling to identify the molecular mechanisms of dasatinib-induced injury to the actin cytoskeleton, and atomic force microscopy to quantify impairment to cellular biomechanics. Furthermore, chronic administration of dasatinib in mice causes reversible glomerular dysfunction, loss of stress fibers, and foot process effacement. We conclude that dasatinib induces nephrotoxicity through altered podocyte actin cytoskeleton, leading to injurious cellular biomechanics.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Antineoplásicos/efectos adversos , Dasatinib/efectos adversos , Podocitos/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Insuficiencia Renal Crónica/patología , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Ratones , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Estados Unidos , United States Food and Drug Administration
10.
Sci Rep ; 7: 43934, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262745

RESUMEN

Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young's modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.


Asunto(s)
Materiales Biomiméticos/metabolismo , Diferenciación Celular , Gelatina/metabolismo , Mecanotransducción Celular , Podocitos/efectos de los fármacos , Podocitos/fisiología , Transglutaminasas/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos
11.
Nat Commun ; 8(1): 2145, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247198

RESUMEN

The shape of a cell within tissues can represent the history of chemical and physical signals that it encounters, but can information from cell shape regulate cellular phenotype independently? Using optimal control theory to constrain reaction-diffusion schemes that are dependent on different surface-to-volume relationships, we find that information from cell shape can be resolved from mechanical signals. We used microfabricated 3-D biomimetic chips to validate predictions that shape-sensing occurs in a tension-independent manner through integrin ß3 signaling pathway in human kidney podocytes and smooth muscle cells. Differential proteomics and functional ablation assays indicate that integrin ß3 is critical in transduction of shape signals through ezrin-radixin-moesin (ERM) family. We used experimentally determined diffusion coefficients and experimentally validated simulations to show that shape sensing is an emergent cellular property enabled by multiple molecular characteristics of integrin ß3. We conclude that 3-D cell shape information, transduced through tension-independent mechanisms, can regulate phenotype.


Asunto(s)
Forma de la Célula/fisiología , Mecanotransducción Celular/fisiología , Miocitos del Músculo Liso/fisiología , Podocitos/fisiología , Estrés Mecánico , Animales , Animales Recién Nacidos , Células COS , Forma de la Célula/genética , Células Cultivadas , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Mecanotransducción Celular/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Podocitos/citología , Podocitos/metabolismo , Proteómica/métodos , Ratas
12.
Sci Rep ; 7(1): 14626, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116112

RESUMEN

Creating a cDNA library for deep mRNA sequencing (mRNAseq) is generally done by random priming, creating multiple sequencing fragments along each transcript. A 3'-end-focused library approach cannot detect differential splicing, but has potentially higher throughput at a lower cost, along with the ability to improve quantification by using transcript molecule counting with unique molecular identifiers (UMI) that correct PCR bias. Here, we compare an implementation of such a 3'-digital gene expression (3'-DGE) approach with "conventional" random primed mRNAseq. Given our particular datasets on cultured human cardiomyocyte cell lines, we find that, while conventional mRNAseq detects ~15% more genes and needs ~500,000 fewer reads per sample for equivalent statistical power, the resulting differentially expressed genes, biological conclusions, and gene signatures are highly concordant between two techniques. We also find good quantitative agreement at the level of individual genes between two techniques for both read counts and fold changes between given conditions. We conclude that, for high-throughput applications, the potential cost savings associated with 3'-DGE approach are likely a reasonable tradeoff for modest reduction in sensitivity and inability to observe alternative splicing, and should enable many larger scale studies focusing on not only differential expression analysis, but also quantitative transcriptome profiling.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Atrofia Muscular Espinal/genética , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Estudios de Casos y Controles , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Modelos Estadísticos , Miocitos Cardíacos/citología , ARN Mensajero/análisis
13.
Sci Signal ; 7(311): ra12, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24497609

RESUMEN

Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a ß-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/metabolismo , Podocitos/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Immunoblotting , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Podocitos/patología , Podocitos/ultraestructura , Proteómica/métodos , Puromicina , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
PLoS One ; 7(11): e49702, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166750

RESUMEN

The epidermal growth factor receptor (EGFR) is involved in many cancers and EGFR has been heavily pursued as a drug target. Drugs targeting EGFR have shown promising clinical results for several cancer types. However, resistance to EGFR inhibitors often occurs, such as with KRAS mutant cancers, therefore new methods of targeting EGFR are needed. The juxtamembrane (JXM) domain of EGFR is critical for receptor activation and targeting this region could potentially be a new method of inhibiting EGFR. We hypothesized that the structural role of the JXM region could be mimicked by peptides encoding a JXM amino acid sequence, which could interfere with EGFR signaling and consequently could have anti-cancer activity. A peptide encoding EGFR 645-662 conjugated to the Tat sequence (TE-64562) displayed anti-cancer activity in multiple human cancer cell types with diminished activity in non-EGFR expressing cells and non-cancerous cells. In nude mice, TE-64562 delayed MDA-MB-231 tumor growth and prolonged survival, without inducing toxicity. TE-64562 induced non-apoptotic cell death after several hours and caspase-3-mediated apoptotic cell death with longer treatment. Mechanistically, TE-64562 bound to EGFR, inhibited its dimerization and caused its down-regulation. TE-64562 reduced phosphorylated and total EGFR levels but did not inhibit kinase activity and instead prolonged it. Our analysis of patient data from The Cancer Genome Atlas supported the hypothesis that down-regulation of EGFR is a potential therapeutic strategy, since phospho- and total-EGFR levels were strongly correlated in a large majority of patient tumor samples, indicating that lower EGFR levels are associated with lower phospho-EGFR levels and presumably less proliferative signals in breast cancer. Akt and Erk were inhibited by TE-64562 and this inhibition was observed in vivo in tumor tissue upon treatment with TE-64562. These results are the first to indicate that the JXM domain of EGFR is a viable drug target for several cancer types.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Péptidos/química , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA