RESUMEN
Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33 P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.
Asunto(s)
Diacilglicerol Quinasa/metabolismo , Proteínas Fúngicas/farmacología , NADPH Oxidasas/metabolismo , Nicotiana/enzimología , Estallido Respiratorio , Línea Celular , Análisis por Conglomerados , Activación Enzimática/efectos de los fármacos , Mutación con Ganancia de Función/genética , Silenciador del Gen , MicroARNs/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ácidos Fosfatidicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Inhibidores de Proteínas Quinasas/farmacología , Estallido Respiratorio/efectos de los fármacos , Nicotiana/efectos de los fármacos , Nicotiana/genética , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismoRESUMEN
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA.
Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Bombas de Protones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Señalización del Calcio , Membrana Celular/fisiología , Células Cultivadas , Electrofisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , ARN de Planta/genéticaRESUMEN
TCPs are plant specific transcription factors with non-canonical basic helix-loop-helix domains. While Arabidopsis thaliana has 24 TCPs involved in cell proliferation and differentiation, their mode of action has not been fully elucidated. Using bioinformatic tools, we demonstrate that TCP transcription factors belong to the intrinsically disordered proteins (IDP) family and that disorder is higher in class I TCPs than in class II TCPs. In particular, using bioinformatic and biochemical approaches, we have characterized TCP8, a class I TCP. TCP8 exhibits three intrinsically disordered regions (IDR) made of more than 50 consecutive residues, in which phosphorylable Ser residues are mainly clustered. Phosphorylation of Ser-211 that belongs to the central IDR was confirmed by mass spectrometry. Yeast two-hybrid assays also showed that the C-terminal IDR corresponds to a transactivation domain. Moreover, biochemical experiments demonstrated that TCP8 tends to oligomerize in dimers, trimers and higher-order multimers. Bimolecular fluorescence complementation (BiFC) experiments carried out on a truncated form of TCP8 lacking the C-terminal IDR indicated that it is effectively required for the pronounced self-assembly of TCP8. These data were reinforced by the prediction of a coiled coil domain in this IDR. The C-terminal IDR acts thus as an oligomerization domain and also a transactivation domain. Moreover, many Molecular Recognition Features (MoRFs) were predicted, indicating that TCP8 could interact with several partners to fulfill a fine regulation of transcription in response to various stimuli.
Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Intrínsecamente Desordenadas/química , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Secuencia de Aminoácidos , Aminoácidos/química , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Fosforilación , Unión Proteica , Multimerización de Proteína , Factores de Transcripción/metabolismoRESUMEN
Lipid phosphate phosphatases (LPPs, E.C. 3.1.3.4) catalyse the dephosphorylation of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA), which are secondary messengers in abscisic acid (ABA) signalling. In this study, we investigated the effect of ABA on the expression of AtLPP genes as they encode putative ABA-signalling partners. We observed that AtLPP2 expression was down-regulated by ABA and we performed experiments on Atlpp2-2, an AtLPP2 knockout mutant, to determine whether AtLPP2 was involved in ABA signalling. We observed that Atlpp2-2 plantlets contained about twice as much PA as the wild-type Col-0 and exhibited higher PA kinase (PAK) activity than Col-0 plants. In addition, we showed that ABA stimulated diacylglycerol kinase (DGK) activity independently of AtLPP2 activity but that the ABA-stimulation of PAK activity recorded in Col-0 was dependent on AtLPP2. In order to evaluate the involvement of AtLPP2 activity in guard cell function, we measured the ABA sensitivity of Atlpp2-2 stomata. The inhibition of stomatal opening was less sensitive to ABA in Atlpp2-2 than in Col-0. Watered and water-stressed plants of the two genotypes accumulated ABA to the same extent, thus leading us to consider Atlpp2-2 an ABA-signalling mutant. Taken together our observations show that AtLPP2 is a part of ABA signalling and participate to the regulation of stomatal movements.
Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fosfatidato Fosfatasa/metabolismo , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Adaptación Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diacilglicerol Quinasa/metabolismo , Regulación hacia Abajo , Sequías , Expresión Génica/efectos de los fármacos , Genotipo , Mutación , Fosfatidato Fosfatasa/genética , Ácidos Fosfatidicos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Agua/fisiologíaRESUMEN
Protein tyrosine (Tyr) phosphorylation plays a central role in many signaling pathways leading to cell growth and differentiation in animals. Tyr phosphorylated proteins have been detected in higher plants, and the roles of protein Tyr phosphatases and protein Tyr kinases in some physiological responses have been shown. We investigated the involvement of Tyr phosphorylation events in abscisic acid (ABA) signaling using a pharmacological approach. Phenylarsine oxide, a specific inhibitor of protein Tyr phosphatase activity, abolished the ABA-dependent accumulation of RAB18 (responsive to ABA 18) transcripts. Protein Tyr kinase inhibitors like genistein, tyrphostin A23, and erbstatin blocked the RAB18 expression induced by ABA in Arabidopsis (Arabidopsis thaliana). Stomatal closure induced by ABA was also inhibited by phenylarsine oxide and genistein. We studied the changes in the Tyr phosphorylation levels of proteins in Arabidopsis seeds after ABA treatment. Proteins were separated by two-dimensional gel electrophoresis, and those phosphorylated on Tyr residues were detected using an anti-phosphotyrosine antibody by western blot. Changes were detected in the Tyr phosphorylation levels of 19 proteins after ABA treatment. Genistein inhibited the ABA-dependent Tyr phosphorylation of proteins. The 19 proteins were analyzed by matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry. Among the proteins identified were storage proteins like cruciferins, enzymes involved in the mobilization of lipid reserves like aconitase, enolase, aldolase, and a lipoprotein, and enzymes necessary for seedling development like the large subunit of Rubisco. Additionally, the identification of three putative signaling proteins, a peptidyl-prolyl isomerase, an RNA-binding protein, and a small ubiquitin-like modifier-conjugating enzyme, enlightens how Tyr phosphorylation might regulate ABA transduction pathways in plants.
Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/embriología , Arabidopsis/enzimología , Electroforesis en Gel Bidimensional , Inhibidores Enzimáticos/farmacología , Genisteína/farmacología , Hidroquinonas/farmacología , Fosforilación , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirfostinos/farmacologíaRESUMEN
The plant hormone abscisic acid (ABA) controls numerous physiological traits: dormancy and germination of seeds, senescence and resistance to abiotic stresses. In order to get more insight into the role of protein tyrosine phosphatase (PTP) in ABA signalling, we obtained eight homozygous T-DNA insertion lines in Arabidopsis thaliana PTP genes. One mutant, named phs1-3, exhibited a strong ABA-induced inhibition of germination as only 26% of its seeds germinated after 3 days instead of 92% for the Columbia (Col-0) line. Genetic and molecular analyses of phs1-3 showed that it bears a unique T-DNA insertion in the promoter of the gene and that the mutation is recessive. PHS1 expression in the mutant is about half that of the Col-0 line. The upregulation of two ABA-induced genes (At5g06760, RAB18) and the downregulation of two ABA-repressed genes (AtCLC-A, ACL) are enhanced in the phs1-3 mutant compared with the wild-type. The 'in planta' aperture of phs1-3 stomata is reduced and the inhibition of the light-induced opening of stomata by ABA is stronger in phs1-3 leaves than in Col-0 leaves. Finally, PHS1 expression is upregulated in the presence of ABA in both phs1-3 and Col-0 but more intensively in the mutant. Thus, phs1-3 is hypersensitive to ABA. Taken together, these results show that PHS1, which encodes a dual-specificity PTP, is a negative regulator of ABA signalling.
Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Tirosina Fosfatasas/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Luz , Mutación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de SeñalRESUMEN
Diacylglycerol pyrophosphate (DGPP) was recently shown to be a possible intermediate in abscisic acid (ABA) signaling. In this study, reverse transcription-PCR of ABA up-regulated genes was used to evaluate the ability of DGPP to trigger gene expression in Arabidopsis (Arabidopsis thaliana) suspension cells. At5g06760, LTI30, RD29A, and RAB18 were stimulated by ABA and also specifically expressed in DGPP-treated cells. Use of the Ca2+ channel blockers fluspirilene and pimozide and the Ca2+ chelator EGTA showed that Ca2+ was required for ABA induction of DGPP formation. In addition, Ca2+ participated in DGPP induction of gene expression via stimulation of anion currents. Hence, a sequence of Ca2+, DGPP, and anion currents, constituting a core of early ABA-signaling events necessary for gene expression, is proposed.
Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calcio/fisiología , Difosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol/análogos & derivados , Aniones/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Técnicas de Cultivo de Célula , Células Cultivadas , Quelantes/farmacología , Ácido Egtácico/farmacología , Fluspirileno/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicerol/metabolismo , Potenciales de la Membrana , Pimozida/farmacología , Transducción de SeñalRESUMEN
In plants, the importance of phospholipid signaling in responses to environmental stresses is becoming well documented. The involvement of phospholipids in abscisic acid (ABA) responses is also established. In a previous study, we demonstrated that the stimulation of phospholipase D (PLD) activity and plasma membrane anion currents by ABA were both required for RAB18 expression in Arabidopsis thaliana suspension cells. In this study, we show that the total lipids extracted from ABA-treated cells mimic ABA in activating plasmalemma anion currents and induction of RAB18 expression. Moreover, ABA evokes within 5 min a transient 1.7-fold increase in phosphatidic acid (PA) followed by a sevenfold increase in diacylglycerol pyrophosphate (DGPP) at 20 min. PA activated plasmalemma anion currents but was incapable of triggering RAB18 expression. By contrast, DGPP mimicked ABA on anion currents and was also able to stimulate RAB18 expression. Here we show the role of DGPP as phospholipid second messenger in ABA signaling.
Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Difosfatos/metabolismo , Glicerol/análogos & derivados , Glicerol/metabolismo , Sistemas de Mensajero Secundario , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Abscisic acid (ABA) plays a key role in the control of stomatal aperture by regulating ion channel activities and water exchanges across the plasma membrane of guard cells. Changes in cytoplasmic calcium content and activation of anion and outward-rectifying K(+) channels are among the earliest cellular responses to ABA in guard cells. In Arabidopsis suspension cells, we have demonstrated that outer plasmalemma perception of ABA triggered similar early events. Furthermore, a Ca(2+) influx and the activation of anion channels are part of the ABA-signaling pathway leading to the specific expression of RAB18. Here, we determine whether phospholipases are involved in ABA-induced RAB18 expression. Phospholipase C is not implicated in this ABA pathway. Using a transphosphatidylation reaction, we show that ABA plasmalemma perception results in a transient stimulation of phospholipase D (PLD) activity, which is necessary for RAB18 expression. Further experiments showed that PLD activation was unlikely to be regulated by heterotrimeric G proteins. We also observed that ABA-dependent stimulation of PLD was necessary for the activation of plasma anion current. However, when ABA activation of plasma anion channels was inhibited, the ABA-dependent activation of PLD was unchanged. Thus, we conclude that in Arabidopsis suspension cells, ABA stimulation of PLD acts upstream from anion channels in the transduction pathway leading to RAB18 expression.