Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(9): e1011666, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733817

RESUMEN

Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por Salmonella , Ratones , Animales , Monocitos , Vacunas Atenuadas , Inflamación
2.
Microbiol Spectr ; 12(6): e0034624, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38709084

RESUMEN

Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE: Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.


Asunto(s)
Proteínas Bacterianas , Burkholderia cenocepacia , Glicoproteínas , Proteómica , Glicosilación , Burkholderia cenocepacia/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteoma/metabolismo
3.
Nat Commun ; 15(1): 1135, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326297

RESUMEN

Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.


Asunto(s)
Receptores de Trombopoyetina , Trombopoyetina , Animales , Ratones , Microscopía por Crioelectrón , Receptores de Citocinas/metabolismo , Receptores de Trombopoyetina/metabolismo , Transducción de Señal
4.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798593

RESUMEN

Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii . Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a nonsteroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin, in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin MIC of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro , implying a stronger synergistic effect in vivo compared to in vitro . A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that the diclofenac can be repurposed with colistin to treat MDR A. baumannii .

5.
Microbiol Spectr ; 10(4): e0151721, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913154

RESUMEN

Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Cápsulas Bacterianas/metabolismo , Cápsulas/análisis , Cápsulas/metabolismo , Humanos , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Antígenos O/análisis , Antígenos O/metabolismo , Polímeros/análisis , Polímeros/metabolismo , Azúcares/metabolismo
6.
mSphere ; 4(6)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722994

RESUMEN

O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide ß-Gal-(1,3)-α-GalNAc-(1,3)-ß-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/crecimiento & desarrollo , Burkholderia cenocepacia/metabolismo , Glicosilación , Sideróforos/metabolismo , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA