Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 3097-3110, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37878053

RESUMEN

Drylands comprise one-third of Earth's terrestrial surface area and support over two billion people. Most drylands are projected to experience altered rainfall regimes, including changes in total amounts and fewer but larger rainfall events interspersed by longer periods without rain. This transition will have ecosystem-wide impacts but the long-term effects on microbial communities remain poorly quantified. We assessed belowground effects of altered rainfall regimes (+ 65% and -65% relative to ambient) at six sites in arid and semi-arid Australia over a period of three years (2016-2019) coinciding with a significant natural drought event (2017-2019). Microbial communities differed significantly among semi-arid and arid sites and across years associated with variation in abiotic factors, such as pH and carbon content, along with rainfall. Rainfall treatments induced shifts in microbial community composition only at a subset of the sites (Milparinka and Quilpie). However, differential abundance analyses revealed that several taxa, including Acidobacteria, TM7, Gemmatimonadates and Chytridiomycota, were more abundant in the wettest year (2016) and that their relative abundance decreased in drier years. By contrast, the relative abundance of oligotrophic taxa such as Actinobacteria, Alpha-proteobacteria, Planctomycetes, and Ascomycota and Basidiomycota, increased during the prolonged drought. Interestingly, fungi were shown to be more sensitive to the prolonged drought and to rainfall treatment than bacteria with Basidiomycota mostly dominant in the reduced rainfall treatment. Moreover, correlation network analyses showed more positive associations among stress-tolerant dominant taxa following the drought (i.e., 2019 compared with 2016). Our result indicates that such stress-tolerant taxa play an important role in how whole communities respond to changes in aridity. Such knowledge provides a better understanding of microbial responses to predicted increases in rainfall variability and the impact on the functioning of semi-arid and arid ecosystems.


Asunto(s)
Quitridiomicetos , Microbiota , Humanos , Ecosistema , Sequías , Microbiología del Suelo , Australia , Suelo/química , Bacterias/genética
2.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513272

RESUMEN

This study investigated the effects of a modified rice bran arabinoxylan compound (RBAC) as a dietary supplement on the gut microbiota of healthy adults. Ten volunteers supplemented their diet with 1 g of RBAC for six weeks and 3 g of RBAC for another six weeks, with a three-week washout period. Faecal samples were collected every 3 weeks over 21 weeks. Microbiota from faecal samples were profiled using 16S rRNA sequencing. Assessment of alpha and beta microbiota diversity was performed using the QIIME2 platform. The results revealed that alpha and beta diversity were not associated with the experimental phase, interventional period, RBAC dosage, or time. However, the statistical significance of the participant was detected in alpha (p < 0.002) and beta (weighted unifrac, p = 0.001) diversity. Explanatory factors, including diet and lifestyle, were significantly associated with alpha (p < 0.05) and beta (p < 0.01) diversity. The individual beta diversity of six participants significantly changed (p < 0.05) during the interventional period. Seven participants showed statistically significant taxonomic changes (ANCOM W ≥ 5). These results classified four participants as responders to RBAC supplementation, with a further two participants as likely responders. In conclusion, the gut microbiome is highly individualised and modulated by RBAC as a dietary supplement, dependent on lifestyle and dietary intake.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Oryza , Adulto , Humanos , Oryza/genética , ARN Ribosómico 16S/genética , Suplementos Dietéticos , Heces
3.
New Phytol ; 233(2): 966-982, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699614

RESUMEN

The pathways regulated in ectomycorrhizal (EcM) plant hosts during the establishment of symbiosis are not as well understood when compared to the functional stages of this mutualistic interaction. Our study used the EcM host Eucalyptus grandis to elucidate symbiosis-regulated pathways across the three phases of this interaction. Using a combination of RNA sequencing and metabolomics we studied both stage-specific and core responses of E. grandis during colonization by Pisolithus microcarpus. Using exogenous manipulation of the abscisic acid (ABA), we studied the role of this pathway during symbiosis establishment. Despite the mutualistic nature of this symbiosis, a large number of disease signalling TIR-NBS-LRR genes were induced. The transcriptional regulation in E. grandis was found to be dynamic across colonization with a small core of genes consistently regulated at all stages. Genes associated to the carotenoid/ABA pathway were found within this core and ABA concentrations increased during fungal integration into the root. Supplementation of ABA led to improved accommodation of P. microcarpus into E. grandis roots. The carotenoid pathway is a core response of an EcM host to its symbiont and highlights the need to understand the role of the stress hormone ABA in controlling host-EcM fungal interactions.


Asunto(s)
Eucalyptus , Micorrizas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Basidiomycota , Eucalyptus/microbiología , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Simbiosis/fisiología
4.
Cancer Immunol Immunother ; 68(12): 1921-1934, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31637475

RESUMEN

Blockade of the PD-1/PD-L1 pathway with targeted monoclonal antibodies has demonstrated encouraging anti-tumour activity in multiple cancer types. We present the case of a patient with BRAF-negative stage IVC anaplastic thyroid cancer (ATC) treated with the anti-PD-1 monoclonal antibody, pembrolizumab, following radiographic progression on chemoradiation. Blood samples were collected prior to and at four time points during treatment with pembrolizumab. Mass cytometry was used to determine expression of relevant biomarkers by peripheral blood mononuclear cells. Faecal samples were collected at baseline and 4 weeks following treatment initiation; taxonomic profiling using 16S ribosomal RNA (rRNA) gene sequencing was performed. Following treatment, a marked expansion in CD20+ B cell, CD16+ CD56lo NK cell and CD45RO+ CCR7+ central memory CD4+ T-cell populations was observed in the peripheral blood. Proportions of cells expressing the co-receptors TIGIT, OX40 and CD86 also increased during treatment. A high abundance of bacteria of the order Bacteroidales, specifically from the Bacteroidaceae and Rikenellaceae families, was identified in the faecal microbiota. Moreover, the patient's microbiome was enriched in Clostridiales order members Ruminococcaceae, Veillonellaceae and Lachnospiraceae. Alpha diversity of the gut microbiome was significantly higher following initiation of checkpoint therapy as assessed by the Shannon and Simpson index. Our results suggest that treatment with pembrolizumab promotes expansion of T-, B- and NK cell populations in the peripheral blood at the time of tumour regression and have the potential to be implemented as predictive biomarkers in the context of checkpoint blockade therapy. Larger studies to confirm these findings are warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Heces/microbiología , Células Asesinas Naturales/inmunología , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Bacteroides , Humanos , Masculino , Microbiota , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , ARN Ribosómico 16S/análisis
5.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27535936

RESUMEN

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Asunto(s)
Biotecnología/métodos , Genoma Fúngico/genética , Genómica/métodos , Levaduras/genética , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Código Genético/genética , Redes y Vías Metabólicas/genética , Filogenia , Especificidad de la Especie , Levaduras/clasificación , Levaduras/metabolismo
6.
Int Wound J ; 16(6): 1477-1486, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31487117

RESUMEN

This study compares two vs six weeks of topical antimicrobial therapy with Cadexomer Iodine in patients with diabetic foot ulcers (DFUs) complicated by chronic biofilm infections. Patients with non-healing DFUs with suspected chronic biofilm infections were eligible for enrolment. Patients were randomised to receive either two or six weeks of treatment with topical Cadexomer Iodine. Tissue biopsies from the ulcers were obtained pre-and-post treatment and underwent DNA sequencing and real-time quantitative polymerase chain reaction (PCR) to determine the total microbial load, community composition, and diversity of bacteria. Scanning electron microscopy confirmed biofilm in all 18 ulcers with suspected chronic biofilm infections. Cadexomer Iodine resulted in 14 of 18 (78%) samples achieving a mean 0.5 log10 reduction in microbial load. Regardless of treatment duration, there was no statistical difference in the reduction of total microbial loads. No difference in the rate of wound healing in the two groups was seen at 6 weeks. Cadexomer Iodine reduces the total microbial load in DFUs with chronic biofilm infections and affects microbial community composition and diversity. All ulcers in both groups showed an initial reduction in wound size with application of Cadexomer Iodine, which might reflect its effect on biofilms.


Asunto(s)
Antiinfecciosos Locales/administración & dosificación , Carga Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Pie Diabético/tratamiento farmacológico , Yodóforos/administración & dosificación , Infección de Heridas/tratamiento farmacológico , Administración Tópica , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Cohortes , ADN Bacteriano , Esquema de Medicación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Proyectos Piloto , Cicatrización de Heridas
7.
New Phytol ; 220(3): 824-835, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29607501

RESUMEN

Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands.


Asunto(s)
Briófitas/fisiología , Clima Desértico , Ecosistema , Microbiología del Suelo , Bacterias/metabolismo , Hongos/fisiología , Modelos Lineales , Suelo
8.
FEMS Yeast Res ; 18(6)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931272

RESUMEN

This study employed cell recycling, batch adaptation, cell mating and high-throughput screening to select adapted Spathaspora passalidarum strains with improved fermentative ability. The most promising candidate YK208-E11 (E11) showed a 3-fold increase in specific fermentation rate compared to the parental strain and an ethanol yield greater than 0.45 g/g substrate while co-utilizing cellobiose, glucose and xylose. Further characterization showed that strain E11 also makes 40% less biomass compared to the parental strain when cultivated in rich media under aerobic conditions. A tetrazolium agar overlay assay in the presence of respiration inhibitors, including rotenone, antimycin A, KCN and salicylhydroxamic acid elucidated the nature of the mutational events. Results indicated that E11 has a deficiency in its respiration system that could contribute to its low cell yield. Strain E11 was subjected to whole genome sequencing and an ∼11 kb deletion was identified; the open reading frames absent in strain E11 code for proteins with predicted functions in respiration, cell division and the actin cytoskeleton, and may contribute to the observed physiology of the adapted strain. Results of the tetrazolium overlay also suggest that cultivation on xylose affects the respiration capacity in the wild-type strain, which could account for its faster fermentation of xylose as compared to glucose. These results support our previous finding that S. passalidarum has highly unusual physiological responses to xylose under oxygen limitation.


Asunto(s)
Adaptación Fisiológica , Microbiología Industrial , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/metabolismo , Biomasa , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Viabilidad Microbiana , Oxígeno/metabolismo , Saccharomycetales/genética , Saccharomycetales/fisiología , Análisis de Secuencia de ADN , Eliminación de Secuencia , Azúcares/metabolismo
9.
Microb Cell Fact ; 17(1): 140, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185188

RESUMEN

BACKGROUND: Scheffersomyces stipitis is an important yeast species in the field of biorenewables due to its desired capacity for xylose utilization. It has been recognized that redox balance plays a critical role in S. stipitis due to the different cofactor preferences in xylose assimilation pathway. However, there has not been any systems level understanding on how the shift in redox balance contributes to the overall metabolic shift in S. stipitis to cope with reduced oxygen uptake. Genome-scale metabolic network models (GEMs) offer the opportunity to gain such systems level understanding; however, currently the two published GEMs for S. stipitis cannot be used for this purpose, as neither of them is able to capture the strain's fermentative metabolism reasonably well due to their poor prediction of xylitol production, a key by-product under oxygen limited conditions. RESULTS: A system identification-based (SID-based) framework that we previously developed for GEM validation is expanded and applied to refine a published GEM for S. stipitis, iBB814. After the modified GEM, named iDH814, was validated using literature data, it is used to obtain genome-scale understanding on how redox cofactor shifts when cells respond to reduced oxygen supply. The SID-based framework for GEM analysis was applied to examine how the environmental perturbation (i.e., reduced oxygen supply) propagates through the metabolic network, and key reactions that contribute to the shifts of redox and metabolic state were identified. Finally, the findings obtained through GEM analysis were validated using transcriptomic data. CONCLUSIONS: iDH814, the modified model, was shown to offer significantly improved performance in terms of matching available experimental results and better capturing available knowledge on the organism. More importantly, our analysis based on iDH814 provides the first genome-scale understanding on how redox balance in S. stipitis was shifted as a result of reduced oxygen supply. The systems level analysis identified the key contributors to the overall metabolic state shift, which were validated using transcriptomic data. The analysis confirmed that S. stipitis uses a concerted approach to cope with the stress associated with reduced oxygen supply, and the shift of reducing power from NADPH to NADH seems to be the center theme that directs the overall shift in metabolic states.


Asunto(s)
Genoma Fúngico/genética , Oxidación-Reducción , Pichia/patogenicidad , Fermentación
10.
Proc Natl Acad Sci U S A ; 112(51): 15684-9, 2015 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-26647180

RESUMEN

Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.


Asunto(s)
Cambio Climático , Ecosistema , Microbiología del Suelo , Concentración de Iones de Hidrógeno
11.
Environ Microbiol ; 19(8): 3070-3086, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28447378

RESUMEN

Soil carbon (C) stabilisation is known to depend in part on its distribution in structural aggregates, and upon soil microbial activity within the aggregates. However, the mechanisms and relative contributions of different microbial groups to C turnover in different aggregates under various management practices remain unclear. The aim of this study was to determine the role of soil aggregation and their associated microbial communities in driving the responses of soil organic matter (SOM) to multiple management practices. Our results demonstrate that higher amounts of C inputs coupled with greater soil aggregation in residue retention management practices has positive effects on soil C content. Our results provide evidence that different aggregate size classes support distinct microbial habitats which supports the colonisation of different microbial communities. Most importantly our results indicate that the effects of management practices on soil C is modulated by soil aggregate sizes and their associated microbial community and are more pronounced in macro-aggregate compared with micro-aggregate sizes. Based on our findings we recommend that differential response of management practices and microbial control on the C turnover in macro-aggregates and micro-aggregate should be explicitly considered when accounting for management impacts on soil C turnover.


Asunto(s)
Bacterias/metabolismo , Carbono/análisis , Microbiología del Suelo , Suelo/química , Agricultura , Bacterias/genética , Bacterias/aislamiento & purificación , Carbono/metabolismo , Ecosistema
12.
Environ Microbiol ; 19(8): 3175-3185, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28557350

RESUMEN

Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO2 ]). Both changes in [CO2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO2 ] (ambient + 240 ppm; [eCO2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO2 ], suggesting that [eCO2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO2 ]. These results provide strong evidence that [eCO2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning.


Asunto(s)
Bacterias/aislamiento & purificación , Dióxido de Carbono/análisis , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Sequías , Ecosistema , Bosques , Rizosfera , Estaciones del Año , Suelo/química
13.
J Virol ; 90(10): 4951-4965, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26937027

RESUMEN

UNLABELLED: Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE: Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Anticuerpos Anti-VIH/análisis , VIH-1/inmunología , Inmunoglobulina A/análisis , Lactancia , Leche/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Femenino , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Inmunidad Materno-Adquirida , Inmunidad Mucosa , Inmunización Secundaria , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Lactante , Macaca mulatta , Embarazo
14.
Environ Microbiol ; 17(10): 4121-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26176189

RESUMEN

The cyanobacterium Prochloron didemni is primarily found in symbiotic relationships with various marine hosts such as ascidians and sponges. Prochloron remains to be successfully cultivated outside of its host, which reflects a lack of knowledge of its unique ecophysiological requirements. We investigated the microenvironment and diversity of Prochloron inhabiting the upper, exposed surface of didemnid ascidians, providing the first insights into this microhabitat. The pH and O2 concentration in this Prochloron biofilm changes dynamically with irradiance, where photosynthetic activity measurements showed low light adaptation (Ek ∼ 80 ± 7 µmol photons m(-2) s(-1)) but high light tolerance. Surface Prochloron cells exhibited a different fine structure to Prochloron cells from cloacal cavities in other ascidians, the principle difference being a central area of many vacuoles dissected by single thylakoids in the surface Prochloron. Cyanobacterial 16S rDNA pyro-sequencing of the biofilm community on four ascidians resulted in 433 operational taxonomic units (OTUs) where on average -85% (65-99%) of all sequence reads, represented by 136 OTUs, were identified as Prochloron via blast search. All of the major Prochloron-OTUs clustered into independent, highly supported phylotypes separate from sequences reported for internal Prochloron, suggesting a hitherto unexplored genetic variability among Prochloron colonizing the outer surface of didemnids.


Asunto(s)
Microambiente Celular/fisiología , Poríferos/microbiología , Prochloron/clasificación , Simbiosis/genética , Urocordados/microbiología , Animales , Biopelículas , ADN Ribosómico/genética , Variación Genética , Luz , Fotosíntesis/genética , Fotosíntesis/fisiología , Filogenia , Prochloron/genética , ARN Ribosómico 16S/genética
15.
Biotechnol Bioeng ; 112(3): 457-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25164099

RESUMEN

Spathaspora passalidarum NN245 (NRRL-Y27907) is an ascomycetous yeast that displays a higher specific fermentation rate with xylose than with glucose. Previous studies have shown that its capacity for xylose fermentation increases while cell yield decreases with decreasing aeration. Aeration optimization plays a crucial role in maximizing bioethanol production from lignocellulosic hydrolysates. Here, we compared the kinetics of S. passalidarum NN245 and Scheffersomyces (Pichia) stipitis NRRL Y-7124 fermenting 15% glucose, 15% xylose, or 12% xylose plus 3% glucose under four different aeration conditions. The maximum specific fermentation rate for S. passalidarum was 0.153 g ethanol/g CDW · h with a yield of 0.448 g/g from 150 g/L xylose at an oxygen transfer rate of 2.47 mmol O2 /L h. Increasing the OTR to 4.27 mmol O2 /L h. decreased the ethanol yield from 0.46 to 0.42 g/g xylose while increasing volumetric ethanol productivity from 0.52 to 0.8 g/L h. Both yeasts had lower cells yields and higher ethanol yields when growing on xylose than when growing on glucose. Acetic acid accretions of both strains correlated positively with increasing aeration. S. passalidarum secreted lower amounts of polyols compared to S. stipitis under most circumstances. In addition, the composition of polyols differed: S. passalidarum accumulated mostly xylitol and R,R-2,3-butanediol (BD) whereas S. stipitis accumulated mostly xylitol and ribitol when cultivated in xylose or a mixture of 12% xylose and 3% glucose. R,R-2,3-BD accumulation by S. passalidarum during xylose fermentation can be as much as four times of that by S. stipitis, and R,R-2,3-BD is also the most abundant byproduct after xylitol. The ratios of polyols accumulated by the two species under different aeration conditions and the implications of these observations for strain and process engineering are discussed.


Asunto(s)
Etanol/metabolismo , Oxígeno/metabolismo , Polímeros/metabolismo , Saccharomycetales/metabolismo , Ácido Acético/análisis , Ácido Acético/metabolismo , Biocombustibles , Etanol/análisis , Fermentación , Glucosa/metabolismo , Cinética , Polímeros/análisis , Xilosa/metabolismo
16.
Biotechnol Bioeng ; 112(6): 1250-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25580821

RESUMEN

Genome-scale metabolic network models represent the link between the genotype and phenotype of the organism, which are usually reconstructed based on the genome sequence annotation and relevant biochemical and physiological information. These models provide a holistic view of the organism's metabolism, and constraint-based metabolic flux analysis methods have been used extensively to study genome-scale cellular metabolic networks. It is clear that the quality of the metabolic network model determines the outcome of the application. Therefore, it is critically important to determine the accuracy of a genome-scale model in describing the cellular metabolism of the modeled strain. However, because of the model complexity, which results in a system with very high degree of freedom, a good agreement between measured and computed substrate uptake rates and product secretion rates is not sufficient to guarantee the predictive capability of the model. To address this challenge, in this work we present a novel system identification based framework to extract the qualitative biological knowledge embedded in the quantitative simulation results from the metabolic network models. The extracted knowledge can serve two purposes: model validation during model development phase, which is the focus of this work, and knowledge discovery once the model is validated. This framework bridges the gap between the large amount of numerical results generated from genome-scale models and the knowledge that can be easily understood by biologists. The effectiveness of the proposed framework is demonstrated by its application to the analysis of two recently published genome-scale models of Scheffersomyces stipitis.


Asunto(s)
Redes y Vías Metabólicas/genética , Modelos Biológicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Biología Computacional/métodos , Simulación por Computador , Análisis de Flujos Metabólicos , Biología de Sistemas/métodos
18.
Curr Genet ; 60(3): 223-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24728863

RESUMEN

We report the development of an efficient genetic transformation system for Lipomyces starkeyi based on a modified lithium acetate transformation protocol. L. starkeyi is a highly lipogenic yeast that grows on a wide range of substrates. The initial transformation rate for this species was extremely low, and required very high concentrations of DNA. A systematic approach for optimizing the protocol resulted in an increase in the transformation efficiency by four orders of magnitude. Important parameters included cell density, the duration of incubation and recovery periods, the heat shock temperature, and the concentration of lithium acetate and carrier DNA within the transformation mixture. We have achieved efficiencies in excess of 8,000 transformants/µg DNA, which now make it possible to screen libraries in the metabolic engineering of this yeast. Metabolic engineering based on this transformation system could improve lipogenesis and enable formation of higher value products.


Asunto(s)
Técnicas de Transferencia de Gen , Lipomyces/genética , Transformación Genética , Acetatos , Lipomyces/crecimiento & desarrollo , Lipomyces/metabolismo , Plásmidos/genética , Temperatura
19.
J Virol ; 87(3): 1554-68, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23175357

RESUMEN

An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity.


Asunto(s)
Vacunas contra el SIDA/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Eliminación de Secuencia , Vacunas contra el SIDA/genética , Animales , Afinidad de Anticuerpos , Epítopos/inmunología , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Humanos , Macaca mulatta
20.
Microb Ecol ; 67(3): 540-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24477921

RESUMEN

To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.


Asunto(s)
Archaea/genética , Bacterias/genética , Biodiversidad , Arrecifes de Coral , Ambiente , Metagenoma , Agua de Mar/microbiología , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Datos de Secuencia Molecular , Filogenia , Queensland , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA