Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 611(7937): 780-786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36385534

RESUMEN

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Asunto(s)
Clostridioides difficile , Enterococcus , Interacciones Microbianas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Arginina/deficiencia , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidad , Enterococcus/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/microbiología , Leucina/metabolismo , Ornitina/metabolismo , Virulencia , Susceptibilidad a Enfermedades
2.
PLoS Comput Biol ; 20(2): e1011919, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422168

RESUMEN

Improvements in the diagnosis and treatment of cancer have revealed long-term side effects of chemotherapeutics, particularly cardiotoxicity. Here, we present paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify metabolic adaptations in response to cardiotoxicity. The paired data was integrated with a genome-scale metabolic network reconstruction of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we confirm previously seen changes in the p53 pathway by doxorubicin and RNA synthesis by 5-fluorouracil, we find evidence for an increase in phospholipid metabolism in response to acetaminophen, and we see a shift in central carbon metabolism suggesting an increase in metabolic demand after treatment with doxorubicin and 5-fluorouracil.


Asunto(s)
Acetaminofén , Cardiotoxicidad , Humanos , Cardiotoxicidad/metabolismo , Metabolómica , Doxorrubicina/farmacología , Perfilación de la Expresión Génica , Fluorouracilo/farmacología
3.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279743

RESUMEN

MOTIVATION: Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS: Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION: The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.


Asunto(s)
Genoma , Programas Informáticos , Bacterias/metabolismo , Redes y Vías Metabólicas , Bases de Datos Factuales
4.
PLoS Comput Biol ; 19(4): e1011076, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099624

RESUMEN

Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Enterotoxinas/metabolismo , Clostridioides/metabolismo , Proteínas Bacterianas/metabolismo
5.
PLoS Comput Biol ; 18(2): e1009341, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130271

RESUMEN

Genome-scale metabolic network reconstructions (GENREs) are valuable tools for understanding microbial metabolism. The process of automatically generating GENREs includes identifying metabolic reactions supported by sufficient genomic evidence to generate a draft metabolic network. The draft GENRE is then gapfilled with additional reactions in order to recapitulate specific growth phenotypes as indicated with associated experimental data. Previous methods have implemented absolute mapping thresholds for the reactions automatically included in draft GENREs; however, there is growing evidence that integrating annotation evidence in a continuous form can improve model accuracy. There is a need for flexibility in the structure of GENREs to better account for uncertainty in biological data, unknown regulatory mechanisms, and context-specificity associated with data inputs. To address this issue, we present a novel method that provides a framework for quantifying combined genomic, biochemical, and phenotypic evidence for each biochemical reaction during automated GENRE construction. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks (CANYUNs), generates accurate GENREs with a quantitative metric for the cumulative evidence for each reaction included in the network. The structuring of CANYUNs allows for the simultaneous integration of three data inputs while maintaining all supporting evidence for biochemical reactions that may be active in an organism. CANYUNs is designed to maximize the utility of experimental and annotation datasets and to ultimately assist in the curation of the reference datasets used for the automatic construction of metabolic networks. We validated CANYUNs by generating an E. coli K-12 model and compared it to the manually curated reconstruction iML1515. Finally, we demonstrated the use of CANYUNs to build a model by generating an E. coli Nissle CANYUNs model using novel phenotypic data that we collected. This method may address key challenges for the procedural construction of metabolic networks by leveraging uncertainty and redundancy in biological data.


Asunto(s)
Escherichia coli/genética , Genómica , Redes y Vías Metabólicas , Fenotipo , Genes Bacterianos , Modelos Biológicos
6.
Clin Infect Dis ; 72(11): e868-e871, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32940644

RESUMEN

In a cohort of infants, we found that lack of the Lewis histo-blood group antigen was associated with increased susceptibility to shigellosis. Broadly inhibiting fucosylation in epithelial cells in vitro decreased invasion by Shigella flexneri. These results support a role for fucosylated glycans in susceptibility to shigellosis.


Asunto(s)
Disentería Bacilar , Humanos , Lactante , Antígenos del Grupo Sanguíneo de Lewis
7.
PLoS Comput Biol ; 16(4): e1007099, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32298268

RESUMEN

The metabolic responses of bacteria to dynamic extracellular conditions drives not only the behavior of single species, but also entire communities of microbes. Over the last decade, genome-scale metabolic network reconstructions have assisted in our appreciation of important metabolic determinants of bacterial physiology. These network models have been a powerful force in understanding the metabolic capacity that species may utilize in order to succeed in an environment. Increasingly, an understanding of context-specific metabolism is critical for elucidating metabolic drivers of larger phenotypes and disease. However, previous approaches to use network models in concert with omics data to better characterize experimental systems have met challenges due to assumptions necessary by the various integration platforms or due to large input data requirements. With these challenges in mind, we developed RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) which uses both transcriptomic abundances and parsimony of overall flux to identify the most cost-effective usage of metabolism that also best reflects the cell's investments into transcription. Additionally, in biological samples where it is difficult to quantify specific growth conditions, it becomes critical to develop methods that require lower amounts of user intervention in order to generate accurate metabolic predictions. Utilizing a metabolic network reconstruction for the model organism Escherichia coli str. K-12 substr. MG1655 (iJO1366), we found that RIPTiDe correctly identifies context-specific metabolic pathway activity without supervision or knowledge of specific media conditions. We also assessed the application of RIPTiDe to in vivo metatranscriptomic data where E. coli was present at high abundances, and found that our approach also effectively predicts metabolic behaviors of host-associated bacteria. In the setting of human health, understanding metabolic changes within bacteria in environments where growth substrate availability is difficult to quantify can have large downstream impacts on our ability to elucidate molecular drivers of disease-associated dysbiosis across the microbiota. Our results indicate that RIPTiDe may have potential to provide understanding of context-specific metabolism of bacteria within complex communities.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Transcriptoma , Algoritmos , Animales , Ciego/microbiología , Biología Computacional , Simulación por Computador , Disbiosis , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Genoma Bacteriano , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos
9.
Appl Environ Microbiol ; 81(1): 396-404, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362056

RESUMEN

Using populations of two sympatric Peromyscus species, we characterized the importance of the host species, physiology, environment, diet, and other factors in shaping the structure and dynamics of their gut microbiota. We performed a capture-mark-release experiment in which we obtained 16S rRNA gene sequence data from 49 animals at multiple time points. In addition, we performed 18S rRNA gene sequencing of the same samples to characterize the diet of each individual. Our analysis could not distinguish between the two species of Peromyscus on the basis of the structures of their microbiotas. However, we did observe a set of bacterial populations that were found in every animal. Most notable were abundant representatives of the genera Lactobacillus and Helicobacter. When we combined the 16S and 18S rRNA gene sequence analyses, we were unable to distinguish the communities on the basis of the animal's diet. Furthermore, there were no discernible differences in the structure of the gut communities based on the capture site or their developmental or physiological status. Finally, in contrast to humans, where each individual has a unique microbiota when sampled over years, among the animals captured in this study, the uniqueness of each microbiota was lost within a week of the original sampling. Wild populations provide an opportunity to study host-microbiota interactions as they originally evolved, and the ability to perform natural experiments will facilitate a greater understanding of the factors that shape the structure and function of the gut microbiota.


Asunto(s)
Microbiota , Peromyscus/microbiología , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Helicobacter/clasificación , Helicobacter/genética , Lactobacillus/clasificación , Lactobacillus/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
10.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609255

RESUMEN

Fecal Microbiota Transplant (FMT) is an emerging therapy that has had remarkable success in treatment and prevention of recurrent Clostridioides difficile infection (rCDI). FMT has recently been associated with adverse outcomes such as inadvertent transfer of antimicrobial resistance, necessitating development of more targeted bacteriotherapies. To address this challenge, we developed a novel systems biology pipeline to identify candidate probiotic strains that would be predicted to interrupt C. difficile pathogenesis. Utilizing metagenomic characterization of human FMT donor samples, we identified those metabolic pathways most associated with successful FMTs and reconstructed the metabolism of encoding species to simulate interactions with C. difficile . This analysis resulted in predictions of high levels of cross-feeding for amino acids in species most associated with FMT success. Guided by these in silico models, we assembled consortia of bacteria with increased amino acid cross-feeding which were then validated in vitro . We subsequently tested the consortia in a murine model of CDI, demonstrating total protection from severe CDI through decreased toxin levels, recovered gut microbiota, and increased intestinal eosinophils. These results support the novel framework that amino acid cross-feeding is likely a critical mechanism in the initial resolution of CDI by FMT. Importantly, we conclude that our predictive platform based on predicted and testable metabolic interactions between the microbiota and C. difficile led to a rationally designed biotherapeutic framework that may be extended to other enteric infections.

11.
Curr Opin Microbiol ; 65: 108-115, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839237

RESUMEN

The progress of infection by Clostridioides difficile is strongly influenced by metabolic cues it encounters as it colonizes the gastrointestinal tract. Both colonization and regulation of virulence have a multi-factorial interaction between host, microbiome, and gene expression cascades. While these connections with metabolism have been understood for some time, many mechanisms of control have remained difficult to directly assay due to high metabolic variability among C. difficile isolates and difficult genetic systems. Computational systems offer a means to interrogate structure of complex or noisy datasets and generate useful, tractable hypotheses to be tested in the laboratory. Recently, in silico techniques have provided powerful insights into metabolic elements of C. difficile infection ranging from virulence regulation to interactions with the gut microbiota. In this review, we introduce and provide context to the methods of computational modeling that have been applied to C. difficile metabolism and virulence thus far. The techniques discussed here have laid the foundation for future multi-scale efforts aimed at understanding the complex interplay of metabolic activity between pathogen, host, and surrounding microbial community in the regulation of C. difficile pathogenesis.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Clostridioides , Clostridioides difficile/genética , Humanos , Virulencia
12.
NPJ Syst Biol Appl ; 8(1): 41, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307414

RESUMEN

Infections due to carbapenem-resistant Enterobacteriaceae have recently emerged as one of the most urgent threats to hospitalized patients within the United States and Europe. By far the most common etiological agent of these infections is Klebsiella pneumoniae, frequently manifesting in hospital-acquired pneumonia with a mortality rate of ~50% even with antimicrobial intervention. We performed transcriptomic analysis of data collected previously from in vitro characterization of both laboratory and clinical isolates which revealed shifts in expression of multiple master metabolic regulators across isolate types. Metabolism has been previously shown to be an effective target for antibacterial therapy, and genome-scale metabolic network reconstructions (GENREs) have provided a powerful means to accelerate identification of potential targets in silico. Combining these techniques with the transcriptome meta-analysis, we generated context-specific models of metabolism utilizing a well-curated GENRE of K. pneumoniae (iYL1228) to identify novel therapeutic targets. Functional metabolic analyses revealed that both composition and metabolic activity of clinical isolate-associated context-specific models significantly differs from laboratory isolate-associated models of the bacterium. Additionally, we identified increased catabolism of L-valine in clinical isolate-specific growth simulations. These findings warrant future studies for potential efficacy of valine transaminase inhibition as a target against K. pneumoniae infection.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Valina/genética , Valina/farmacología
13.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785619

RESUMEN

Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.


Asunto(s)
Antibiosis , Terapia Biológica , Clostridioides difficile/fisiología , Infecciones por Clostridium/prevención & control , Animales , Clostridioides difficile/clasificación , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Femenino , Glicina/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Esporas Bacterianas/clasificación , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/fisiología , Virulencia
14.
mSphere ; 6(4): e0039321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34259555

RESUMEN

Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Infección Hospitalaria , Femenino , Humanos , Lactante , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Fenotipo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Factores de Virulencia , Adulto Joven
15.
mSystems ; 6(5): e0091921, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34609164

RESUMEN

The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.

16.
Cell Host Microbe ; 28(3): 358-359, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32910918

RESUMEN

In this issue of Cell Host & Microbe, publications from Bushman et al. (2020) and Knippel et al. (2020) outline elements of host epithelial damage or inflammation that Clostridioides difficile subverts, enabling continued growth. These mechanisms provide insight into how this important pathogen influences the gut environment to promote its metabolic strategy during infection.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Clostridiales , Hemo , Humanos , Estrés Oxidativo
17.
mSphere ; 4(1)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700514

RESUMEN

Clostridium (Clostridioides) difficile, a Gram-positive, anaerobic bacterium, is the leading single cause of nosocomial infections in the United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure to antibiotics, as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80 to 90% success rate of fecal microbial transplants in treating recurrent infections. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance of C. difficile has yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance of C. difficile However, random forest analysis using only two members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance of C. difficile from the murine gastrointestinal tract.IMPORTANCEClostridium difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance of C. difficile from the GI tract. Our results show that clearance of C. difficile can occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens, as inherent differences in the baseline community structure of animals may bias findings.


Asunto(s)
Inmunidad Adaptativa , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/microbiología , Microbioma Gastrointestinal , Interacciones Microbianas , Animales , Formación de Anticuerpos , Modelos Animales de Enfermedad , Inmunidad Celular , Ratones
18.
mSphere ; 3(3)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950381

RESUMEN

Susceptibility to Clostridium difficile infection (CDI) is primarily associated with previous exposure to antibiotics, which compromise the structure and function of the gut bacterial community. Specific antibiotic classes correlate more strongly with recurrent or persistent C. difficile infection. As such, we utilized a mouse model of infection to explore the effect of distinct antibiotic classes on the impact that infection has on community-level transcription and metabolic signatures shortly following pathogen colonization and how those changes may associate with persistence of C. difficile Untargeted metabolomic analysis revealed that C. difficile infection had significantly larger impacts on the metabolic environment across cefoperazone- and streptomycin-pretreated mice, which became persistently colonized compared to clindamycin-pretreated mice, where infection quickly became undetectable. Through metagenome-enabled metatranscriptomics, we observed that transcripts for genes associated with carbon and energy acquisition were greatly reduced in infected animals, suggesting that those niches were instead occupied by C. difficile Furthermore, the largest changes in transcription were seen in the least abundant species, indicating that C. difficile may "attack the loser" in gut environments where sustained infection occurs more readily. Overall, our results suggest that C. difficile is able to restructure the nutrient-niche landscape in the gut to promote persistent infection.IMPORTANCEClostridium difficile has become the most common single cause of hospital-acquired infection over the last decade in the United States. Colonization resistance to the nosocomial pathogen is primarily provided by the gut microbiota, which is also involved in clearing the infection as the community recovers from perturbation. As distinct antibiotics are associated with different risk levels for CDI, we utilized a mouse model of infection with 3 separate antibiotic pretreatment regimens to generate alternative gut microbiomes that each allowed for C. difficile colonization but varied in clearance rate. To assess community-level dynamics, we implemented an integrative multi-omics approach that revealed that infection significantly changed many aspects of the gut community. The degree to which the community changed was inversely correlated with clearance during the first 6 days of infection, suggesting that C. difficile differentially modifies the gut environment to promote persistence. This is the first time that metagenome-enabled metatranscriptomics have been employed to study the behavior of a host-associated microbiota in response to an infection. Our results allow for a previously unseen understanding of the ecology associated with C. difficile infection and provide the groundwork for identification of context-specific probiotic therapies.


Asunto(s)
Antibacterianos/administración & dosificación , Ciego/química , Ciego/microbiología , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Microbioma Gastrointestinal , Animales , Antibacterianos/efectos adversos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Metabolómica , Metagenómica , Ratones
19.
mSystems ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28761936

RESUMEN

Clostridium difficile is the largest single cause of hospital-acquired infection in the United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure to antibiotics, as they disrupt the gut bacterial community which protects from C. difficile colonization. Multiple antibiotic classes have been associated with CDI susceptibility, many leading to distinct community structures stemming from variation in bacterial targets of action. These community structures present separate metabolic challenges to C. difficile. Therefore, we hypothesized that the pathogen adapts its physiology to the nutrients within different gut environments. Utilizing an in vivo CDI model, we demonstrated that C. difficile highly colonized ceca of mice pretreated with any of three antibiotics from distinct classes. Levels of C. difficile spore formation and toxin activity varied between animals based on the antibiotic pretreatment. These physiologic processes in C. difficile are partially regulated by environmental nutrient concentrations. To investigate metabolic responses of the bacterium in vivo, we performed transcriptomic analysis of C. difficile from ceca of infected mice across pretreatments. This revealed heterogeneous expression in numerous catabolic pathways for diverse growth substrates. To assess which resources C. difficile exploited, we developed a genome-scale metabolic model with a transcriptome-enabled metabolite scoring algorithm integrating network architecture. This platform identified nutrients that C. difficile used preferentially between pretreatments, which were validated through untargeted mass spectrometry of each microbiome. Our results supported the hypothesis that C. difficile inhabits alternative nutrient niches across cecal microbiomes with increased preference for nitrogen-containing carbon sources, particularly Stickland fermentation substrates and host-derived glycans. IMPORTANCE Infection by the bacterium Clostridium difficile causes an inflammatory diarrheal disease which can become life threatening and has grown to be the most prevalent nosocomial infection. Susceptibility to C. difficile infection is strongly associated with previous antibiotic treatment, which disrupts the gut microbiota and reduces its ability to prevent colonization. In this study, we demonstrated that C. difficile altered pathogenesis between hosts pretreated with antibiotics from separate classes and exploited different nutrient sources across these environments. Our metabolite score calculation also provides a platform to study nutrient requirements of pathogens during an infection. Our results suggest that C. difficile colonization resistance is mediated by multiple groups of bacteria competing for several subsets of nutrients and could explain why total reintroduction of competitors through fecal microbial transplant currently is the most effective treatment for recurrent CDI. This work could ultimately contribute to the identification of targeted, context-dependent measures that prevent or reduce C. difficile colonization, including pre- and probiotic therapies.

20.
PeerJ ; 4: e1869, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069806

RESUMEN

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA