Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Trends Analyt Chem ; 109: 275-286, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30662103

RESUMEN

Due to excellent separation capacity for complex mixtures of chemicals, comprehensive two-dimensional gas chromatography (GC × GC) is being utilized with increasing frequency for metabolomics analyses. This review describes recent advances in GC × GC method development for metabolomics, organismal sampling techniques compatible with GC × GC, metabolomic discoveries made using GC × GC, and recommendations and best practices for collecting and reporting GC × GC metabolomics data.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38291985

RESUMEN

Poor oral health is associated with cardiovascular disease and dementia. Potential pathways include sepsis from oral bacteria, systemic inflammation, and nutritional deficiencies. However, in post-industrialized populations, links between oral health and chronic disease may be confounded because the lower socioeconomic exposome (poor diet, pollution, and low physical activity) often entails insufficient dental care. We assessed tooth loss, caries, and damaged teeth, in relation to cardiovascular and brain aging among the Tsimane, a subsistence population living a relatively traditional forager-horticulturalist lifestyle with poor dental health, but minimal cardiovascular disease and dementia. Dental health was assessed by a physician in 739 participants aged 40-92 years with cardiac and brain health measured by chest computed tomography (CT; n = 728) and brain CT (n = 605). A subset of 356 individuals aged 60+ were also assessed for dementia and mild cognitive impairment (n = 33 impaired). Tooth loss was highly prevalent, with 2.2 teeth lost per decade and a 2-fold greater loss in women. The number of teeth with exposed pulp was associated with higher inflammation, as measured by cytokine levels and white blood cell counts, and lower body mass index. Coronary artery calcium and thoracic aortic calcium were not associated with tooth loss or damaged teeth. However, aortic valve calcification and brain tissue loss were higher in those who had more teeth with exposed pulp. Overall, these results suggest that dental health is associated with indicators of chronic diseases in the absence of typical confounds, even in a population with low cardiovascular and dementia risk factors.


Asunto(s)
Válvula Aórtica , Válvula Aórtica/patología , Encéfalo , Calcinosis , Inflamación , Salud Bucal , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Calcinosis/diagnóstico por imagen , Válvula Aórtica/diagnóstico por imagen , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adulto , Pérdida de Diente/epidemiología , Demencia/epidemiología , Demencia/etiología , Demencia/diagnóstico por imagen , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/epidemiología , Disfunción Cognitiva , Tomografía Computarizada por Rayos X , Tamaño de los Órganos
3.
Pathogens ; 12(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36839453

RESUMEN

Staphylococci are broadly adaptable and their ability to grow in unique environments has been widely established, but the most common and clinically relevant staphylococcal niche is the skin and mucous membranes of mammals and birds. S. aureus causes severe infections in mammalian tissues and organs, with high morbidities, mortalities, and treatment costs. S. epidermidis is an important human commensal but is also capable of deadly infections. Gold-standard diagnostic methods for staph infections currently rely upon retrieval and characterization of the infectious agent through various culture-based methods. Yet, obtaining a viable bacterial sample for in vitro identification of infection etiology remains a significant barrier in clinical diagnostics. The development of volatile organic compound (VOC) profiles for the detection and identification of pathogens is an area of intensive research, with significant efforts toward establishing breath tests for infections. This review describes the limitations of existing infection diagnostics, reviews the principles and advantages of VOC-based diagnostics, summarizes the analytical tools for VOC discovery and clinical detection, and highlights examples of how VOC biomarkers have been applied to diagnosing human and animal staph infections.

4.
Metabolites ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867100

RESUMEN

In vitro cultivation of staphylococci is fundamental to both clinical and research microbiology, but few studies, to-date, have investigated how the differences in rich media can influence the volatilome of cultivated bacteria. The objective of this study was to determine the influence of rich media composition on the chemical characteristics of the volatilomes of Staphylococcus aureus and Staphylococcus epidermidis. S. aureus (ATCC 12600) and S. epidermidis (ATCC 12228) were cultured in triplicate in four rich complex media (brain heart infusion (BHI), lysogeny broth (LB), Mueller Hinton broth (MHB), and tryptic soy broth (TSB)), and the volatile metabolites produced by each culture were analyzed using headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). When comparing the chemical compositions of the staph volatilomes by the presence versus absence of volatiles produced in each medium, we observed few differences. However, when the relative abundances of volatiles were included in the analyses, we observed that culturing staph in media containing free glucose (BHI and TSB) resulted in volatilomes dominated by acids and esters (67%). The low-glucose media (LB and MHB) produced ketones in greatest relative abundances, but the volatilome compositions in these two media were highly dissimilar. We conclude that the staphylococcal volatilome is strongly influenced by the nutritional composition of the growth medium, especially the availability of free glucose, which is much more evident when the relative abundances of the volatiles are analyzed, compared to the presence versus absence.

5.
J Breath Res ; 14(1): 016007, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31461416

RESUMEN

Staphylococcus aureus asymptomatically colonizes a third of the world's population, and it is an opportunistic pathogen that can cause life threatening diseases. To diagnose S. aureus infections, it is necessary to differentiate S. aureus from the ubiquitous human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all humans. Efforts are underway to identify volatile biomarkers for diagnosing S. aureus infections, but to date no studies have investigated whether S. aureus and S. epidermidis can be reliably differentiated under a variety of growth conditions. The overall goal of this study was to evaluate the influence of growth medium on the ability to differentiate S. aureus and S. epidermidis based on their volatile profiles. We used headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to examine the headspace volatiles of S. aureus and S. epidermidis when aerobically grown in four different complex media. We detected 337 volatile features when culturing S. aureus and S. epidermidis in four complex media, termed the staph volatiles, and found only 20%-40% concurrence in the volatiles produced by these two species in any single medium. Using principal components analysis and hierarchical clustering analysis on the staph volatiles, we observed that S. aureus and S. epidermidis clustered independently from each other, and distinctly clustered by growth medium within species. Removing volatiles that are species and/or media-specific from the analysis reduced the resolution between species clusters, but in all models clustering by species overrode clustering by media type. These analyses suggest that, while volatile profiles are media-specific, species differences dominate the staph volatilome. These data enable future investigations into the identification of volatile biomarkers to discriminate staphylococcal pathogens versus commensals, which will improve staph diagnoses and provide insights into the biochemistry of staph infections and immunity.


Asunto(s)
Medios de Cultivo/química , Staphylococcus aureus/aislamiento & purificación , Staphylococcus epidermidis/aislamiento & purificación , Compuestos Orgánicos Volátiles/análisis , Biomarcadores/análisis , Pruebas Respiratorias , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas , Humanos , Análisis de Componente Principal , Microextracción en Fase Sólida , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA