Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10723-10734, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588404

RESUMEN

Nonaqueous sol-gel syntheses have been used to make many types of metal oxide nanocrystals. According to the current paradigm, nonaqueous syntheses have slow kinetics, thus favoring the thermodynamic (crystalline) product. Here we investigate the synthesis of hafnium (and zirconium) oxide nanocrystals from the metal chloride in benzyl alcohol. We follow the transition from precursor to nanocrystal through a combination of rheology, EXAFS, NMR, TEM, and X-ray total scattering (PDF analysis). Upon dissolving the metal chloride precursor, the exchange of chloride ligands for benzylalkoxide liberates HCl. The latter catalyzes the etherification of benzyl alcohol, eliminating water. During the temperature ramp to the reaction temperature (220 °C), sufficient water is produced to turn the reaction mixture into a macroscopic gel. Rheological analysis shows a network consisting of strong interactions with temperature-dependent restructuring. After a few minutes at the reaction temperature, crystalline particles emerge from the gel, and nucleation and growth are complete after 30 min. In contrast, 4 h are required to obtain the highest isolated yield, which we attribute to the slow in situ formation of water (the extraction solvent). We used our mechanistic insights to optimize the synthesis, achieving high isolated yields with a reduced reaction time. Our results oppose the idea that nonaqueous sol-gel syntheses necessarily form crystalline products in one step, without a transient, amorphous gel state.

2.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639743

RESUMEN

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

3.
Chimia (Aarau) ; 78(5): 344-348, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38822779

RESUMEN

Presented here is an electrochemical three-electrode Gas Diffusion Electrode (GDE) cell tailored for operandoand in situ investigations of electrocatalytic processes, with a particular focus on X-ray scattering studies. The optimized cell is engineered to accommodate the minimal sample-detector distances requisite for comprehensive X-ray total scattering investigations. An in-depth understanding of catalytic processes requires their study under 'working' conditions. Configured as a flow-cell, the setup therefore enables the examination of electrocatalysts under high current densities and associated gas evolution phenomena, particularly pertinent for reactions like the oxygen evolution reaction (OER). Notably, its transparency simplifies cell alignment, troubleshooting, and facilitates scans through the catalyst layer, crucial for background corrections. Demonstrating its versatility, we showcase its utility through Small Angle X-ray Scattering (SAXS), X-ray Diffraction (XRD), and X-ray Pair Distribution Function (PDF) analyses of total scattering data.

4.
J Struct Biol ; 215(3): 107999, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451560

RESUMEN

While recent advances in cryo-EM, coupled with single particle analysis, have the potential to allow structure determination in a near-native state from vanishingly few individual particles, this vision has yet to be realised in practise. Requirements for particle numbers that currently far exceed the theoretical lower limits, challenges with the practicalities of achieving high concentrations for difficult-to-produce samples, and inadequate sample-dependent imaging conditions, all result in significant bottlenecks preventing routine structure determination using cryo-EM. Therefore, considerable efforts are being made to circumvent these bottlenecks by developing affinity purification of samples on-grid; at once obviating the need to produce large amounts of protein, as well as more directly controlling the variable, and sample-dependent, process of grid preparation. In this proof-of-concept study, we demonstrate a further practical step towards this paradigm, developing a 3D-printable flow-cell device to allow on-grid affinity purification from raw inputs such as whole cell lysates, using graphene oxide-based affinity grids. Our flow-cell device can be interfaced directly with routinely-used laboratory equipment such as liquid chromatographs, or peristaltic pumps, fitted with standard chromatographic (1/16") connectors, and can be used to allow binding of samples to affinity grids in a controlled environment prior to the extensive washing required to remove impurities. Furthermore, by designing a device which can be 3D printed and coupled to routinely used laboratory equipment, we hope to increase the accessibility of the techniques presented herein to researchers working towards single-particle macromolecular structures.


Asunto(s)
Impresión Tridimensional , Proteínas , Microscopía por Crioelectrón/métodos , Microscopía Electrónica
5.
J Am Chem Soc ; 145(3): 1769-1782, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36631996

RESUMEN

Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.

6.
Inorg Chem ; 62(37): 14949-14958, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37658472

RESUMEN

Understanding material nucleation processes is crucial for the development of synthesis pathways for tailormade materials. However, we currently have little knowledge of the influence of the precursor solution structure on the formation pathway of materials. We here use in situ total scattering to show how the precursor solution structure influences which crystal structure is formed during the hydrothermal synthesis of tungsten oxides. We investigate the synthesis of tungsten oxide from the two polyoxometalate salts, ammonium metatungstate, and ammonium paratungstate. In both cases, a hexagonal ammonium tungsten bronze (NH4)0.25WO3 is formed as the final product. If the precursor solution contains metatungstate clusters, this phase forms directly in the hydrothermal synthesis. However, if the paratungstate B cluster is present at the time of crystallization, a metastable intermediate phase in the form of a pyrochlore-type tungsten oxide, WO3·0.5H2O, initially forms. The pyrochlore structure then undergoes a phase transformation into the tungsten bronze phase. Our studies thus experimentally show that the precursor cluster structure present at the moment of crystallization directly influences the formed crystalline phase and suggests that the precursor structure just prior to crystallization can be used as a tool for targeting specific crystalline phases of interest.

7.
Inorg Chem ; 62(32): 13021-13029, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37537143

RESUMEN

Manganese dioxide is a good candidate for effective energy storage and conversion as it possesses rich electrochemistry. The compound also shows a wide polymorphism. The γ-variety, an intergrowth of ß- and R-MnO2, has been extensively studied in several types of batteries (e.g., Zn/MnO2, Li-ion) and is a common electrode material for commercial batteries. It is well known that the insertion of protons thermodynamically stabilizes γ-MnO2 with respect to ß-MnO2. Protons can enter the structure either by forming groups of 4 hydroxyls around a Mn4+ vacancy, called a Ruetschi defect, or by forming a hydroxyl group near a Mn3+ ion, called a Coleman defect. These defects differently affect the electrochemistry of manganese oxide, and tailoring their amount in the structure can be used to tune the material properties. Previous studies have addressed the proton insertion process, but the role of the synthesis pathway on the amount of defects created is not well understood. We here investigate how the parameters in a hydrothermal synthesis of γ-MnO2 nanoparticles influence the amount and type of H-related defects. Structural investigations are carried out using Pair Distribution Function analysis, X-ray absorption spectroscopy, thermogravimetric analysis, and inelastic neutron scattering. We demonstrate the possibility to control the amount and type of defects introduced during the synthesis. While the amount of Ruetschi defects increases with synthesis temperature, it decreases with extended synthesis time, along with the amount of Coleman defects. Moreover, we discuss the arrangement of the defects in the γ-MnO2 nanoparticles.

8.
Scand J Public Health ; 51(3): 339-346, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34515598

RESUMEN

AIMS: A key issue in public health is how to approach ethnic inequities. Despite an increased focus on the health of people from ethnic minorities in the last 15 years, significant ethnic health inequities still exist in Denmark. These arise during pregnancy and are exacerbated by higher rates of exposure to health risks during the life course. This study aimed to formulate recommendations on both structural and organisational levels to reduce ethnic health inequities. METHODS: Nine decision-makers - representing municipalities, regions, the private sector and voluntary organisations in Denmark - participated in the formulation of recommendations inspired by the Delphi method. The consensus process was conducted in three rounds during spring 2020, resulting in eight overall recommendations, including suggestions for action. RESULTS: The recommendations address both structural and organisational levels. They aim to strengthen: 1) health policies and strategies related to the needs of people from ethnic minorities, including health literacy, linguistic, cultural and social differences; 2) health-promoting local initiatives developed in co-creation with people from ethnic minorities; 3) health promotion and prevention from a life course perspective with a focus on early intervention; 4) cross-sectoral and interdisciplinary collaborations that facilitate transitions and coordination; 5) competencies of professionals in terms of cultural knowledge, awareness, reflexivity and skills; 6) access to healthcare services by increasing information and resources; 7) interpreting assistance for, and linguistic accessibility to, healthcare services; 8) documentation and intervention research. CONCLUSIONS: To reduce ethnic health inequities, it is crucial that Danish welfare institutions, including their strategies, approaches and skills of employees, are adapted to serve an increasingly heterogeneous population.


Asunto(s)
Promoción de la Salud , Grupos de Población , Femenino , Embarazo , Humanos , Técnica Delphi , Salud Pública , Dinamarca
9.
Nat Mater ; 20(2): 208-213, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32839587

RESUMEN

Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum-cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum-cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.

10.
Int Braz J Urol ; 48(3): 471-481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168313

RESUMEN

PURPOSE: Nonobstructive azoospermia (NOA) associated with primary spermatogenic failure is a common cause of male infertility usually considered untreatable; however, some reports have suggested that hormonal stimulation to boost the intra-testicular testosterone level and spermatogenesis might increase the chance of achieving pregnancy using homologous sperm. MATERIALS AND METHODS: We report a series of eight NOA males who received long-term treatment with recombinant human chorionic gonadotropin twice a week for spermatogenesis stimulation. Six males received additional recombinant follicle-stimulating hormone (FSH) supplementation 150-225 IU twice weekly. RESULTS: After recombinant gonadotropin therapy, viable spermatozoa were retrieved from the ejaculate in two patients and by testicular sperm aspiration (TESA) in another two subjects. Singleton spermatozoon retrieved from testes were frozen by vitrification on Cell-Sleeper devices. Two live births were obtained after intracytoplasmic sperm injection with ejaculated spermatozoa and one live birth and an ongoing pregnancy using thawed spermatozoa from TESA. CONCLUSION: Our proof-of-concept study indicates that hormonal therapy with recombinant gonadotropins could be considered in infertile men with NOA as an alternative to sperm donation. Large-scale studies are needed to substantiate hormone stimulation therapy with recombinant gonadotropins in routine clinical practice for this severe form of male infertility.


Asunto(s)
Azoospermia , Azoospermia/tratamiento farmacológico , Femenino , Hormona Folículo Estimulante , Humanos , Masculino , Embarazo , Prueba de Estudio Conceptual , Estudios Retrospectivos , Recuperación de la Esperma , Espermatogénesis , Espermatozoides , Testículo
11.
Proc Natl Acad Sci U S A ; 115(19): E4340-E4349, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666238

RESUMEN

Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.


Asunto(s)
Bacillus megaterium , Modelos Biológicos , Biosíntesis de Proteínas , Transcripción Genética , Bacillus megaterium/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo
12.
Chimia (Aarau) ; 75(5): 368-375, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34016231

RESUMEN

The development of new functional nanomaterials builds on an understanding of the intricate relation between material structure and properties. Only by knowing the atomic arrangement can the mechanisms responsible for material properties be elucidated and new materials and technologies developed. Nanomaterials challenge the crystallographic techniques often used for structure characterization, and the structure of many nanomaterials are therefore often assumed to be 'cut-outs' of the corresponding bulk material. Here, I will discuss how Pair Distribution Function (PDF) analysis of total scattering data can aid nanochemists in obtaining a structural understanding of nanoscale materials, focusing on examples from metal oxide chemistry.

13.
Angew Chem Int Ed Engl ; 60(37): 20407-20416, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34056798

RESUMEN

The combination of in situ pair distribution function (PDF) analysis and small-angle X-ray scattering (SAXS) enables analysis of the formation mechanism of metal oxido nanoclusters and cluster-solvent interactions as they take place. Herein, we demonstrate the method for the formation of clusters with a [Bi38 O45 ] core. Upon dissolution of crystalline [Bi6 O5 (OH)3 (NO3 )5 ]⋅3 H2 O in DMSO, an intermediate rapidly forms, which slowly grows to stable [Bi38 O45 ] clusters. To identify the intermediate, we developed an automated modeling method, where smaller [Bix Oy ] structures based on the [Bi38 O45 ] framework are tested against the data. [Bi22 O26 ] was identified as the main intermediate species, illustrating how combined PDF and SAXS analysis is a powerful tool to gain insight into nucleation on an atomic scale. PDF also provides information on the interaction between nanoclusters and solvent, which is shown to depend on the nature of the ligands on the cluster surface.

14.
Inorg Chem ; 59(15): 10409-10421, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32108485

RESUMEN

The structure of lanthanide(III) ions in solutions high in nitrate has been debated since the early days of lanthanide coordination chemistry. The structure and properties of lanthanides in these solutions are essential in industrial rare-earth separation, as well as in the fundamental solution chemistry of these elements. Pending decades of debate, it was established that nitrate is bidentate and coordinates in the inner sphere, and complexes have been observed with as many as four nitrates coordinated to a single lanthanide(III) center in nonaqueous solutions. We revisit the interactions between nitrate and europium(III) in methanol using optical spectroscopy, X-ray total scattering, and the current understanding of europium(III) photophysics. By a combination of direct and indirect methods to probe the structure, it was found that four distinct species from Eu(MeOH)93+ to [Eu(MeOH)3(NO3)3] are present in solutions containing from 0 to 2 M NO3- ions. It was shown that the changes in transition probabilities together with high-resolution spectra can provide information on speciation and how the minute changes in ligand field affect the microstates. By a comparison to total X-ray scattering, it was concluded that the optical spectra alone allow the constitution and symmetry of the europium(III) species to be determined. Most notably, the minute changes in the all oxygen atom coordination imply significant changes in the optical properties of the europium(III) center.

15.
Phys Chem Chem Phys ; 22(22): 12794-12805, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32469022

RESUMEN

Lanthanide(iii) coordination chemistry in solution is inherently complicated by the lack of directional interactions and rapid ligand exchange. The latter can be eliminated in kinetically inert complexes, but remains a challenge in complexes between lanthanide(iii) ions and smaller ligands. As multiple conformations and partial decomplexation is an issue even with multidentate ligands, it will influence the observed solution properties of complexes of smaller ligands common in the field of f-elements coordination chemistry such as acetylacetonates and dipicolinates. Here, europium(iii) complexes with one, two and three dipicolinates were investigated in a series of 13 samples, where the composition was varied from 0 to 3 equivalents of dipicolinate. While the results did show the formation of three distinct europium(iii) dipicolinate complexes confirming the literature data on the system, clear discrepancies in speciation related properties were evident when comparing the results from absorption and luminescence spectroscopy. It was concluded that the difference is due to the difference in time constant of the two experiments. Furthermore, it is shown that the information obtained from luminescence arises from a weigthed average, and with discepancies between the observed and actual concentration exceeding 25%, it is advised that the weighted averages are taken into consideration when reporting on solution properties of lanthanide(iii) complexes. From the resolved optical spectra of [Eu(H2O)9]3+, [Eu(DPA)(H2O)6]+, [Eu(DPA)2(H2O)3]-, and [Eu(DPA)3]3-, the excited energy levels and transition probabilities are determined, and it was concluded that both transition probabilities and ligand field effects on the microstates are different in all four species.

16.
Phys Chem Chem Phys ; 22(43): 25001-25010, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33112325

RESUMEN

Potassium chromium jarosite, KCr3(OH)6(SO4)2 (Cr-jarosite), is considered a promising candidate to display spin liquid behavior due to the strong magnetic frustration imposed by the crystal structure. However, the ground state magnetic properties have been debated, since Cr-jarosite is notoriously non-stoichiometric. Our study reports the magnetic properties for deuterated KCr3(OD)6(SO4)2 on chemically well-defined samples, which have been characteried by a combination of powder X-ray diffraction, neutron diffraction, solid state NMR spectroscopy, and scanning electron microscopy with energy dispersive spectroscopy. Eight polycrystalline samples, which all contained only 1-3% Cr vacancies were obtained. However, significant substitution (2-27%) of potassium with H2O and/or H3O+ was observed and resulted in pronounced stacking disorder along the c-axis. A clear second-order transition to an antiferromagnetically ordered phase at TN = 3.8(1) K with a small net moment of 0.03 µB per Cr3+-ion was obtained from vibrating sample magnetometry and temperature dependent neutron diffraction. The moment is attributed to spin canting caused by the Dzyaloshinskii-Moriya interaction. Thus, our experimental results imply that even ideal potassium chromium jarosite will exhibit magnetic order below 4 K and therefore it does not qualify as a true spin liquid material.

17.
Health Promot Int ; 35(5): 1137-1149, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691797

RESUMEN

Despite growing evidence of the significance of health literacy in managing and coping with acquired immune deficiency syndrome (HIV), it is not yet an integrated part of HIV/AIDS-related health promotion research and practice in Africa. This article contributes to addressing the gap in research on health literacy and HIV in Sub-Saharan Africa. We aimed to assess health literacy-related needs of young people living with HIV (YPLHIV) and adapt existing health literacy frameworks to the context of HIV/AIDS in Malawi. We used focus group discussions to collect data from a sample of the membership of the national association of YPLHIV. Twenty-four HIV-positive youth (18-29 years) participated in focus group discussions. Participants came from three regions of Malawi. Additionally, we conducted three in-depth interviews with key informants. We used a thematic framework approach to analyse data in MAXQDA. We contextualized definitions of four dimensions of health literacy: functional, interactive, critical and distributed health literacy, which we used as an a priori analytical framework. To further contextualize the framework, we revised it iteratively throughout the analysis process. We identified the need for comprehensive information about HIV and sexual reproductive health, skills to interact with healthcare providers and navigate the health system, and skills to appraise information from different sources, among others. The identified needs were translated into nine action recommendations for the national association of YPLHIV, and with relevance within the wider HIV sector in Malawi and beyond. We found that the dimensions in our analytical framework operate on the individual, system and public policy levels.


Asunto(s)
Infecciones por VIH , Alfabetización en Salud , Adolescente , Formación de Concepto , Humanos , Malaui , Evaluación de Necesidades , Investigación Cualitativa
18.
Proc Natl Acad Sci U S A ; 113(24): E3431-40, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247386

RESUMEN

Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.


Asunto(s)
Celulosa , Bacilos Grampositivos Asporogénicos , Ingeniería Metabólica/métodos , Celulosa/biosíntesis , Celulosa/genética , Bacilos Grampositivos Asporogénicos/genética , Bacilos Grampositivos Asporogénicos/aislamiento & purificación , Bacilos Grampositivos Asporogénicos/metabolismo
19.
Aust N Z J Obstet Gynaecol ; 59(4): 508-513, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30338853

RESUMEN

BACKGROUND: Miscarriage can result in significant psychological morbidity. Research suggests health professionals play a role in shaping women's experience of miscarriage. AIMS: This study explored the views and practices of Australian health professionals in caring for women experiencing miscarriage. MATERIALS AND METHODS: Twelve health professionals from disciplines including medicine, midwifery and sonography were purposively sampled. Semi-structured interviews were recorded, transcribed and subjected to thematic analysis. RESULTS: Participants acknowledged miscarriage is often a distressing event associated with feelings of grief and failure. They believed women who conceived through in vitro fertilisation, had experienced multiple miscarriages, or had a pre-existing mental illness were likely to experience more distress than others. Despite limited training, participants generally felt competent in their abilities to provide emotional support. They viewed their role largely as guilt-mitigation, which they achieved by stressing the frequency of miscarriage and emphasising that women were not at fault. Follow-up practices varied, and where they did occur, focused on physical recovery. Generally, participants relied on women to express the need for further support. Participants reported that time and resource issues, compassion fatigue and a need for self-protection restricted their abilities to provide better support care. CONCLUSIONS: There are discrepancies between the emotional support health professionals think women want and are able to provide, and the support women would like. This exploratory study suggests the need for further investigation into provision of improved health professional support for women.


Asunto(s)
Aborto Espontáneo/psicología , Aborto Espontáneo/terapia , Adaptación Psicológica , Empatía , Pesar , Rol Profesional , Adulto , Anciano , Australia , Emociones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Investigación Cualitativa , Encuestas y Cuestionarios
20.
J Am Chem Soc ; 139(15): 5607-5613, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28328207

RESUMEN

Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted ß-Ga2O3 with different degrees of substitution. X-ray total scattering and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline ß-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous ß-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure-property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA