Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7926): 341-347, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045295

RESUMEN

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Asunto(s)
Antineoplásicos , Reactores Biológicos , Vías Biosintéticas , Ingeniería Metabólica , Saccharomyces cerevisiae , Vinblastina , Alcaloides de la Vinca , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/provisión & distribución , Catharanthus/química , Genes Fúngicos , Genes de Plantas , Ingeniería Metabólica/métodos , Fosfatos de Poliisoprenilo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptófano , Vinblastina/biosíntesis , Vinblastina/química , Vinblastina/provisión & distribución , Alcaloides de la Vinca/biosíntesis , Alcaloides de la Vinca/química , Alcaloides de la Vinca/provisión & distribución
2.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932529

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Asunto(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas/metabolismo
3.
Nucleic Acids Res ; 51(17): e91, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37572348

RESUMEN

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we describe CRI-SPA, a method allowing the transfer of chromosomal genetic features from a CRI-SPA Donor strain to arrayed strains in large libraries of Saccharomyces cerevisiae. CRI-SPA is based on mating, CRISPR-Cas9-induced gene conversion, and Selective Ploidy Ablation. CRI-SPA can be massively parallelized with automation and can be executed within a week. We demonstrate the power of CRI-SPA by transferring four genes that enable betaxanthin production into each strain of the yeast knockout collection (≈4800 strains). Using this setup, we show that CRI-SPA is highly efficient and reproducible, and even allows marker-free transfer of genetic features. Moreover, we validate a set of CRI-SPA hits by showing that their phenotypes correlate strongly with the phenotypes of the corresponding mutant strains recreated by reverse genetic engineering. Hence, our results provide a genome-wide overview of the genetic requirements for betaxanthin production. We envision that the simplicity, speed, and reliability offered by CRI-SPA will make it a versatile tool to forward systems-level understanding of biological processes.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Betaxantinas , Edición Génica/métodos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
4.
Metab Eng ; 83: 75-85, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428729

RESUMEN

The success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the Saccharomyces cerevisiae knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions. In its first version, CRI-SPA relied on the colour of the product betaxanthins to quantify strains synthesis ability. However, only a few compounds produce a visible or fluorescent phenotype limiting the scope of our approach. Here, we adapt CRI-SPA to onboard a biosensor reporting the interactions between host genes and the synthesis of the colourless product cis-cis-muconic acid (CCM). We phenotype >9,000 genotypes, including both gene knock-out and overexpression, by quantifying the fluorescence of yeast colonies growing in high-density agar arrays. We identify novel metabolic targets belonging to a broad range of cellular functions and confirm their positive impact on CCM biosynthesis. In particular, our data suggests a new interplay between CCM biosynthesis and cytosolic redox through their common interaction with the oxidative pentose phosphate pathway. Our genome-wide exploration of host:pathway interaction opens novel strategies for improved production of CCM in yeast cell factories.


Asunto(s)
Saccharomyces cerevisiae , Ácido Sórbico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Mol Life Sci ; 80(1): 32, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609589

RESUMEN

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and thus protect cells against the accumulation of potentially toxic non-native proteins. Studies have shown that PQC degrons are hydrophobic and rarely contain negatively charged residues, features which are shared with chaperone-binding regions. Here we explore the notion that chaperone-binding regions may function as PQC degrons. When directly tested, we found that a canonical Hsp70-binding motif (the APPY peptide) functioned as a dose-dependent PQC degron both in yeast and in human cells. In yeast, Hsp70, Hsp110, Fes1, and the E3 Ubr1 target the APPY degron. Screening revealed that the sequence space within the chaperone-binding region of APPY that is compatible with degron function is vast. We find that the number of exposed Hsp70-binding sites in the yeast proteome correlates with a reduced protein abundance and half-life. Our results suggest that when protein folding fails, chaperone-binding sites may operate as PQC degrons, and that the sequence properties leading to PQC-linked degradation therefore overlap with those of chaperone binding.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteolisis , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Nucleic Acids Res ; 49(15): e88, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107026

RESUMEN

Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker's yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.


Asunto(s)
Evolución Molecular Dirigida , ARN Guía de Kinetoplastida/genética , ARN Polimerasa Dependiente del ARN/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Genoma Fúngico/genética , Humanos , Mutagénesis/genética , Mutación/genética , Selección Genética/genética
7.
PLoS Biol ; 17(3): e2007050, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856169

RESUMEN

We present a selection design that couples S-adenosylmethionine-dependent methylation to growth. We demonstrate its use in improving the enzyme activities of not only N-type and O-type methyltransferases by 2-fold but also an acetyltransferase of another enzyme category when linked to a methylation pathway in Escherichia coli using adaptive laboratory evolution. We also demonstrate its application for drug discovery using a catechol O-methyltransferase and its inhibitors entacapone and tolcapone. Implementation of this design in Saccharomyces cerevisiae is also demonstrated.


Asunto(s)
S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Catecol O-Metiltransferasa/metabolismo , Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Metilación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Tolcapona/farmacología
8.
Nucleic Acids Res ; 48(1): e3, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777933

RESUMEN

Allosteric transcription factors (aTFs) have proven widely applicable for biotechnology and synthetic biology as ligand-specific biosensors enabling real-time monitoring, selection and regulation of cellular metabolism. However, both the biosensor specificity and the correlation between ligand concentration and biosensor output signal, also known as the transfer function, often needs to be optimized before meeting application needs. Here, we present a versatile and high-throughput method to evolve prokaryotic aTF specificity and transfer functions in a eukaryote chassis, namely baker's yeast Saccharomyces cerevisiae. From a single round of mutagenesis of the effector-binding domain (EBD) coupled with various toggled selection regimes, we robustly select aTF variants of the cis,cis-muconic acid-inducible transcription factor BenM evolved for change in ligand specificity, increased dynamic output range, shifts in operational range, and a complete inversion-of-function from activation to repression. Importantly, by targeting only the EBD, the evolved biosensors display DNA-binding affinities similar to BenM, and are functional when ported back into a prokaryotic chassis. The developed platform technology thus leverages aTF evolvability for the development of new host-agnostic biosensors with user-defined small-molecule specificities and transfer functions.


Asunto(s)
Técnicas Biosensibles , Proteínas de Unión al ADN/genética , ADN/genética , Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Biblioteca de Genes , Genes Reporteros , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Modelos Moleculares , Mutagénesis , Dominios Proteicos , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/farmacología , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Nat Prod Rep ; 38(12): 2145-2153, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33969366

RESUMEN

Microorganisms and plants represent major sources of natural compounds with a plethora of bioactive properties. Among these, plant natural products (PNPs) remain indispensable to human health. With few exceptions, PNP-based pharmaceuticals come from plant specialized metabolisms and display a structure far too complex for a profitable production by total chemical synthesis. Accordingly, their industrial processes of supply are still mostly based on the extraction of final products or precursors directly from plant materials. This implies that particular contexts (e.g. pandemics, climate changes) and natural resource overexploitation are main drivers for the high production cost and recurrent supply shortages. Recently, biotechnological manufacturing alternatives gave rise to a multitude of benchmark studies implementing the production of important PNPs in various heterologous hosts. Here, we spotlight unprecedented advancements in the field of metabolic engineering dedicated to the heterologous production of a prominent series of PNPs that were achieved during the year 2020. We also discuss how the knowledge accumulated in recent years could pave the way for a broader manufacturing palette of natural products from a wide range of natural resources.


Asunto(s)
Productos Biológicos/metabolismo , Ingeniería Metabólica/métodos , Plantas/metabolismo , Redes y Vías Metabólicas , Preparaciones de Plantas/metabolismo
10.
Metab Eng ; 61: 369-380, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32717328

RESUMEN

Engineering living cells for production of chemicals, enzymes and therapeutics can burden cells due to use of limited native co-factor availability and/or expression burdens, totalling a fitness deficit compared to parental cells encoded through long evolutionary trajectories to maximise fitness. Ultimately, this discrepancy puts a selective pressure against fitness-burdened engineered cells under prolonged bioprocesses, and potentially leads to complete eradication of high-performing engineered cells at the population level. Here we present the mutation landscapes of fitness-burdened yeast cells engineered for vanillin-ß-glucoside production. Next, we design synthetic control circuits based on transcriptome analysis and biosensors responsive to vanillin-ß-glucoside pathway intermediates in order to stabilize vanillin-ß-glucoside production over ~55 generations in sequential passage experiments. Furthermore, using biosensors with two different modes of action we identify control circuits linking vanillin-ß-glucoside pathway flux to various essential cellular functions, and demonstrate control circuits robustness and almost 2-fold higher vanillin-ß-glucoside production, including 5-fold increase in total vanillin-ß-glucoside pathway metabolite accumulation, in a fed-batch fermentation compared to vanillin-ß-glucoside producing cells without control circuits.


Asunto(s)
Benzaldehídos/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
FEMS Yeast Res ; 20(1)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825496

RESUMEN

G protein-coupled receptors (GPCRs) comprise the largest class of membrane proteins in the human genome, with a common denominator of seven-transmembrane domains largely conserved among eukaryotes. Yeast is naturally armoured with three different GPCRs for pheromone and sugar sensing, with the pheromone pathway being extensively hijacked for characterising heterologous GPCR signalling in a model eukaryote. This review focusses on functional GPCR studies performed in yeast and on the elucidated hotspots for engineering, and discusses both endogenous and heterologous GPCR signalling. Key emphasis will be devoted to studies describing important engineering parameters to consider for successful coupling of GPCRs to the yeast mating pathway. We also review the various means of applying yeast for studying GPCRs, including the use of yeast armed with heterologous GPCRs as a platform for (i) deorphanisation of orphan receptors, (ii) metabolic engineering of yeast for production of bioactive products and (iii) medical applications related to pathogen detection and drug discovery. Finally, this review summarises the current challenges related to expression of functional membrane-bound GPCRs in yeast and discusses the opportunities to continue capitalising on yeast as a model chassis for functional GPCR signalling studies.


Asunto(s)
Ingeniería de Proteínas , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Técnicas Biosensibles , Biotecnología , Descubrimiento de Drogas , Humanos , Feromonas/genética , Feromonas/metabolismo
12.
Nucleic Acids Res ; 46(21): e127, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30124898

RESUMEN

Functional characterization of regulatory DNA elements in broad genetic contexts is a prerequisite for forward engineering of biological systems. Translation initiation site (TIS) sequences are attractive to use for regulating gene activity and metabolic pathway fluxes because the genetic changes are minimal. However, limited knowledge is available on tuning gene outputs by varying TISs in different genetic and environmental contexts. Here, we created TIS hexamer libraries in baker's yeast Saccharomyces cerevisiae directly 5' end of a reporter gene in various promoter contexts and measured gene activity distributions for each library. Next, selected TIS sequences, resulted in almost 10-fold changes in reporter outputs, were experimentally characterized in various environmental and genetic contexts in both yeast and mammalian cells. From our analyses, we observed strong linear correlations (R2 = 0.75-0.98) between all pairwise combinations of TIS order and gene activity. Finally, our analysis enabled the identification of a TIS with almost 50% stronger output than a commonly used TIS for protein expression in mammalian cells, and selected TISs were also used to tune gene activities in yeast at a metabolic branch point in order to prototype fitness and carotenoid production landscapes. Taken together, the characterized TISs support reliable context-independent forward engineering of translation initiation in eukaryotes.


Asunto(s)
Regiones no Traducidas 5' , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Células CHO , Carotenoides/genética , Carotenoides/metabolismo , Cricetulus , Células Eucariotas/fisiología , Citometría de Flujo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Microorganismos Modificados Genéticamente , Iniciación de la Cadena Peptídica Traduccional/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Metab Eng ; 48: 288-296, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29981865

RESUMEN

Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98-99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.


Asunto(s)
Sistemas CRISPR-Cas , Evolución Molecular Dirigida/métodos , Genoma Fúngico , Saccharomyces cerevisiae , Ácido Mevalónico/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Nat Chem Biol ; 12(11): 951-958, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27642864

RESUMEN

Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications.


Asunto(s)
Técnicas Biosensibles , Células Procariotas/metabolismo , Ingeniería de Proteínas , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
15.
FEMS Yeast Res ; 18(4)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726937

RESUMEN

The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación de la Expresión Génica , Biología Molecular/métodos , Transcripción Genética , Levaduras/genética
16.
Nucleic Acids Res ; 44(17): e136, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27325743

RESUMEN

Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest.


Asunto(s)
Ingeniería Genética/métodos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/genética , Biología Sintética , Sitios de Unión/genética , Fermentación , Fluorescencia , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
17.
FEMS Yeast Res ; 17(7)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961766

RESUMEN

Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However, compared to the methods developed for engineering cell factories, the methods developed for testing the performance of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell factory development and robustness of overall bioprocesses.


Asunto(s)
Reactores Biológicos , Técnicas Biosensibles , Factores de Transcripción/metabolismo , Levaduras/genética , Levaduras/metabolismo , Bioingeniería/instrumentación , Bioingeniería/métodos , Expresión Génica , Genes Reporteros , Proteínas Represoras/metabolismo , Transactivadores/metabolismo
18.
Microb Cell Fact ; 16(1): 46, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298224

RESUMEN

BACKGROUND: Transcriptional reprogramming is a fundamental process of living cells in order to adapt to environmental and endogenous cues. In order to allow flexible and timely control over gene expression without the interference of native gene expression machinery, a large number of studies have focused on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene transcription start site. RESULTS: In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101 guide-RNA (gRNA) structures on a total of 14 different yeast promoters, we identified the best-performing combinations based on reporter assays. Though a larger number of gRNA-promoter combinations do not perturb gene expression, some gRNAs support expression perturbations up to ~threefold. The best-performing gRNAs were used for single and multiplex reprogramming strategies for redirecting flux related to isoprenoid production and optimization of TAG profiles. From these studies, we identified both constitutive and inducible multiplex reprogramming strategies enabling significant changes in isoprenoid production and increases in TAG. CONCLUSION: Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also identify a large number of gRNA positions in 14 native yeast target pomoters that do not affect expression, suggesting the need for further optimization of gRNA design tools and dCas9 engineering.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/metabolismo , ARN Guía de Kinetoplastida/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Vías Biosintéticas/genética , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/genética , Regiones Promotoras Genéticas , Biología Sintética/métodos , Terpenos/metabolismo , Triglicéridos/metabolismo
19.
Metab Eng ; 34: 44-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26707540

RESUMEN

One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Microbiano/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Mejoramiento Genético/métodos
20.
Nucleic Acids Res ; 42(12): 7681-93, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24914054

RESUMEN

Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together with the workflow associated with functional modules offer a strong resource to unravel the regulatory potential of NAC genes and that this workflow could be used to study other families of transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Sitios de Unión , ADN de Plantas/química , ADN de Plantas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA