Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 294(48): 18232-18243, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31640988

RESUMEN

Fibrillins serve as scaffolds for the assembly of elastic fibers that contribute to the maintenance of tissue homeostasis and regulate growth factor signaling in the extracellular space. Fibrillin-1 is a modular glycoprotein that includes 7 latent transforming growth factor ß (TGFß)-binding protein-like (TB) domains and mediates cell adhesion through integrin binding to the RGD motif in its 4th TB domain. A subset of missense mutations within TB4 cause stiff skin syndrome (SSS), a rare autosomal dominant form of scleroderma. The fibrotic phenotype is thought to be regulated by changes in the ability of fibrillin-1 to mediate integrin binding. We characterized the ability of each RGD-binding integrin to mediate cell adhesion to fibrillin-1 or a disease-causing variant. Our data show that 7 of the 8 RGD-binding integrins can mediate adhesion to fibrillin-1. A single amino acid substitution responsible for SSS (W1570C) markedly inhibited adhesion mediated by integrins α5ß1, αvß5, and αvß6, partially inhibited adhesion mediated by αvß1, and did not inhibit adhesion mediated by α8ß1 or αIIbß3. Adhesion mediated by integrin αvß3 depended on the cell surface expression level. In the SSS mutant background, the presence of a cysteine residue in place of highly conserved tryptophan 1570 alters the conformation of the region containing the exposed RGD sequence within the same domain to differentially affect fibrillin's interactions with distinct RGD-binding integrins.


Asunto(s)
Adhesión Celular , Fibrilina-1 , Integrinas , Síndrome de Marfan , Mutación Missense , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Fibrilina-1/química , Fibrilina-1/genética , Fibrilina-1/metabolismo , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Ratones , Dominios Proteicos
2.
Hum Mol Genet ; 24(15): 4454-63, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25979247

RESUMEN

Fibrillin-1 is the major component of the 10-12 nm diameter extracellular matrix microfibrils. The majority of mutations affecting the human fibrillin-1 gene, FBN1, result in Marfan syndrome (MFS), a common connective tissue disorder characterised by tall stature, ocular and cardiovascular defects. Recently, stiff skin syndrome (SSS) and a group of syndromes known collectively as the acromelic dysplasias, which typically result in short stature, skin thickening and joint stiffness, have been linked to FBN1 mutations that affect specific domains of the fibrillin-1 protein. Despite their apparent phenotypic differences, dysregulation of transforming growth factor ß (TGFß) is a common factor in all of these disorders. Using a newly developed assay to track the secretion and incorporation of full-length, GFP-tagged fibrillin-1 into the extracellular matrix, we investigated whether or not there were differences in the secretion and microfibril assembly profiles of fibrillin-1 variants containing substitutions associated with MFS, SSS or the acromelic dysplasias. We show that substitutions in fibrillin-1 domains TB4 and TB5 that cause SSS and the acromelic dysplasias do not prevent fibrillin-1 from being secreted or assembled into microfibrils, whereas MFS-associated substitutions in these domains result in a loss of recombinant protein in the culture medium and no association with microfibrils. These results suggest fundamental differences in the dominant pathogenic mechanisms underlying MFS, SSS and the acromelic dysplasias, which give rise to TGFß dysregulation associated with these diseases.


Asunto(s)
Contractura/genética , Síndrome de Marfan/genética , Proteínas de Microfilamentos/genética , Enfermedades Cutáneas Genéticas/genética , Factor de Crecimiento Transformador beta1/genética , Contractura/patología , Enanismo/genética , Enanismo/patología , Matriz Extracelular/genética , Matriz Extracelular/patología , Fibrilina-1 , Fibrilinas , Humanos , Síndrome de Marfan/patología , Microfibrillas/genética , Microfibrillas/patología , Proteínas de Microfilamentos/metabolismo , Mutación , Enfermedades Cutáneas Genéticas/patología , Factor de Crecimiento Transformador beta1/metabolismo
3.
Biochem J ; 473(7): 827-38, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026396

RESUMEN

The 10-12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß (TGFß). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10-12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10-12 nm diameter microfibril and perform such diverse roles.


Asunto(s)
Tejido Conectivo/metabolismo , Enanismo/metabolismo , Síndrome de Marfan/metabolismo , Microfibrillas/metabolismo , Proteínas de Microfilamentos/metabolismo , Mutación , Osteocondrodisplasias/metabolismo , Animales , Tejido Conectivo/patología , Enanismo/genética , Enanismo/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Microfibrillas/genética , Microfibrillas/patología , Proteínas de Microfilamentos/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(28): 10155-60, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982166

RESUMEN

Fibrillin microfibrils are 10-12 nm diameter, extracellular matrix assemblies that provide dynamic tissues of metazoan species with many of their biomechanical properties as well as sequestering growth factors and cytokines. Assembly of fibrillin monomers into microfibrils is thought to occur at the cell surface, with initial steps including proprotein processing, multimerization driven by the C terminus, and the head-to-tail alignment of adjacent molecules. At present the mechanisms that regulate microfibril assembly are still to be elucidated. We have used structure-informed protein engineering to create a recombinant, GFP-tagged version of fibrillin-1 (GFP-Fbn) to study this process. Using HEK293T cells transiently transfected with GFP-Fbn constructs, we show that (i) the C-terminal propeptide is an essential requirement for the secretion of full-length fibrillin-1 from cells; (ii) failure to cleave off the C-terminal propeptide blocks the assembly of fibrillin-1 into microfibrils produced by dermal fibroblasts; and (iii) the requirement of the propeptide for secretion is linked to the presence of domains cbEGF41-43, because either deletion or exchange of domains in this region leads to cellular retention. Collectively, these data suggest a mechanism in which the propeptide blocks a key site at the C terminus to prevent premature microfibril assembly.


Asunto(s)
Dermis/metabolismo , Fibroblastos/metabolismo , Microfibrillas/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Dermis/citología , Fibrilina-1 , Fibrilinas , Fibroblastos/citología , Células HEK293 , Humanos , Microfibrillas/genética , Proteínas de Microfilamentos/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
5.
Am J Hum Genet ; 89(1): 7-14, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21683322

RESUMEN

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFß-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFß signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFß signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Enanismo/genética , Anomalías del Ojo/genética , Deformidades Congénitas de las Extremidades/genética , Proteínas de Microfilamentos/genética , Mutación , Adolescente , Adulto , Niño , Preescolar , Tejido Conectivo/anomalías , Análisis Mutacional de ADN , Exones , Proteínas de la Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Técnica del Anticuerpo Fluorescente , Heterocigoto , Humanos , Cuerpos de Inclusión/genética , Síndrome de Marfan/genética , Microfibrillas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Fenotipo , Estructura Terciaria de Proteína , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Adulto Joven
6.
Am J Med Genet A ; 161A(8): 2047-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23794388

RESUMEN

Mutations in Fibrillin 1 (FBN1) are associated with Marfan syndrome and in some instances with the MASS phenotype (myopia, mitral valve prolapse, borderline non-progressive aortic root dilatation, skeletal features, and striae). Potential confusion over diagnosis and management in patients with borderline features has been addressed through the revised Ghent nosology, which emphasizes the importance of aortic root dilatation and ectopia lentis as features of Marfan syndrome. The overlapping and more common mitral valve prolapse syndrome is precluded by ectopia lentis or aortic dilatation. Among these clinically related conditions, there is no compelling evidence that genotype predicts phenotype, with the exception of neonatal Marfan syndrome, mutations in which cluster within FBN1 exons 24-32. Recent reports also link two very different phenotypes to changes in FBN1. Heterozygous mutations in transforming growth factor ß-binding protein-like domain 5 (TB5) can cause acromicric or geleophysic dysplasias-and mutations in the TB4 domain, which contains an integrin binding RGD loop, have been found in congenital scleroderma/stiff skin syndrome. We report on a variant in an evolutionarily conserved residue that stabilizes the integrin binding fragment of FBN1, associated with juvenile idiopathic arthritis, mitral valve prolapse or apparently normal phenotype in different family members.


Asunto(s)
Artritis Juvenil/genética , Integrinas/metabolismo , Proteínas de Microfilamentos/genética , Prolapso de la Válvula Mitral/genética , Mutación/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Artritis Juvenil/diagnóstico , Femenino , Fibrilina-1 , Fibrilinas , Humanos , Masculino , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Prolapso de la Válvula Mitral/diagnóstico , Datos de Secuencia Molecular , Linaje , Fenotipo , Conformación Proteica , Homología de Secuencia de Aminoácido , Adulto Joven
7.
Biochem J ; 433(2): 263-76, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21175431

RESUMEN

Fibrillins and LTBPs [latent TGFß (transforming growth factor ß)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFß-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFß propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.


Asunto(s)
Evolución Molecular , Proteínas de Unión a TGF-beta Latente/química , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Animales , Fibrilinas , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Microfilamentos/genética , Unión Proteica , Estructura Terciaria de Proteína
8.
Sci Signal ; 15(755): eabo3507, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36219682

RESUMEN

The canonical members of the Jagged/Serrate and Delta families of transmembrane ligands have an extracellular, amino-terminal C2 domain that binds to phospholipids and is required for optimal activation of the Notch receptor. Somatic mutations that cause amino substitutions in the C2 domain in human JAGGED1 (JAG1) have been identified in tumors. We found in reporter cell assays that mutations affecting an N-glycosylation site reduced the ligand's ability to activate Notch. This N-glycosylation site located in the C2 domain is conserved in the Jagged/Serrate family but is lacking in the Delta family. Site-specific glycan analysis of the JAG1 amino terminus demonstrated that occupancy of this site by either a complex-type or high-mannose N-glycan was required for full Notch activation in reporter cell assays. Similarly to JAG1 variants with defects in Notch binding, N-glycan removal, either by mutagenesis of the glycosylation site or by endoglycosidase treatment, reduced receptor activation. The N-glycan variants also reduced receptor activation in a Notch signaling-dependent vascular smooth muscle cell differentiation assay. Loss of the C2 N-glycan reduced JAG1 binding to liposomes to a similar extent as the loss of the entire C2 domain. Molecular dynamics simulations suggested that the presence of the N-glycan limits the orientation of JAG1 relative to the membrane, thus facilitating Notch binding. These data are consistent with a critical role for the N-glycan in promoting a lipid-binding conformation that is required to orient Jagged at the cell membrane for full Notch activation.


Asunto(s)
Dominios C2 , Liposomas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ligandos , Lípidos , Manosa , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Polisacáridos/genética , Receptores Notch/genética , Receptores Notch/metabolismo
9.
Structure ; 17(5): 759-68, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19446531

RESUMEN

The fibrillins and latent transforming growth factor-beta binding proteins (LTBPs) form a superfamily of structurally-related proteins consisting of calcium-binding epidermal growth factor-like (cbEGF) domains interspersed with 8-cysteine-containing transforming growth factor beta-binding protein-like (TB) and hybrid (hyb) domains. Fibrillins are the major components of the extracellular 10-12 nm diameter microfibrils, which mediate a variety of cell-matrix interactions. Here we present the crystal structure of a fibrillin-1 cbEGF9-hyb2-cbEGF10 fragment, solved to 1.8 A resolution. The hybrid domain fold is similar, but not identical, to the TB domain fold seen in previous fibrillin-1 and LTBP-1 fragments. Pairwise interactions with neighboring cbEGF domains demonstrate extensive interfaces, with the hyb2-cbEGF10 interface dependent on Ca(2+) binding. These observations provide accurate constraints for models of fibrillin organization within the 10-12 nm microfibrils and provide further molecular insights into how Ca(2+) binding influences the intermolecular interactions and biomechanical properties of fibrillin-1.


Asunto(s)
Proteínas de Unión al Calcio/química , Disulfuros/química , Proteínas de Unión a TGF-beta Latente/química , Proteínas de Microfilamentos/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio , Proteínas de Unión al Calcio/metabolismo , Disulfuros/metabolismo , Factores de Crecimiento Endotelial/química , Factores de Crecimiento Endotelial/metabolismo , Fibrilinas , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
10.
PLoS One ; 16(3): e0248532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735269

RESUMEN

The human FBN1 gene encodes fibrillin-1 (FBN1); the main component of the 10-12 nm diameter extracellular matrix microfibrils. Marfan syndrome (MFS) is a common inherited connective tissue disorder, caused by FBN1 mutations. It features a wide spectrum of disease severity, from mild cases to the lethal neonatal form (nMFS), that is yet to be explained at the molecular level. Mutations associated with nMFS generally affect a region of FBN1 between domains TB3-cbEGF18-the "neonatal region". To gain insight into the process of fibril assembly and increase our understanding of the mechanisms determining disease severity in MFS, we compared the secretion and assembly properties of FBN1 variants containing nMFS-associated substitutions with variants associated with milder, classical MFS (cMFS). In the majority of cases, both nMFS- and cMFS-associated neonatal region variants were secreted at levels comparable to wild type. Microfibril incorporation by the nMFS variants was greatly reduced or absent compared to the cMFS forms, however, suggesting that nMFS substitutions disrupt a previously undefined site of microfibril assembly. Additional analysis of a domain deletion variant caused by exon skipping also indicates that register in the neonatal region is likely to be critical for assembly. These data demonstrate for the first time new requirements for microfibril biogenesis and identify at least two distinct molecular mechanisms associated with disease substitutions in the TB3-cbEGF18 region; incorporation of mutant FBN1 into microfibrils changing their integral properties (cMFS) or the blocking of wild type FBN1 assembly by mutant molecules that prevents late-stage lateral assembly (nMFS).


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/genética , Microfibrillas/metabolismo , Fibrilina-1/metabolismo , Células HEK293 , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/patología , Microfibrillas/patología , Mutagénesis , Mutación , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Índice de Severidad de la Enfermedad
11.
Nat Commun ; 10(1): 4910, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659163

RESUMEN

AspH is an endoplasmic reticulum (ER) membrane-anchored 2-oxoglutarate oxygenase whose C-terminal oxygenase and tetratricopeptide repeat (TPR) domains present in the ER lumen. AspH catalyses hydroxylation of asparaginyl- and aspartyl-residues in epidermal growth factor-like domains (EGFDs). Here we report crystal structures of human AspH, with and without substrate, that reveal substantial conformational changes of the oxygenase and TPR domains during substrate binding. Fe(II)-binding by AspH is unusual, employing only two Fe(II)-binding ligands (His679/His725). Most EGFD structures adopt an established fold with a conserved Cys1-3, 2-4, 5-6 disulfide bonding pattern; an unexpected Cys3-4 disulfide bonding pattern is observed in AspH-EGFD substrate complexes, the catalytic relevance of which is supported by studies involving stable cyclic peptide substrate analogues and by effects of Ca(II) ions on activity. The results have implications for EGFD disulfide pattern processing in the ER and will enable medicinal chemistry efforts targeting human 2OG oxygenases.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de la Membrana/química , Oxigenasas de Función Mixta/química , Proteínas Musculares/química , Secuencia de Aminoácidos , Asparagina/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dominio Catalítico , Cristalografía , Disulfuros/química , Disulfuros/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Conformación Proteica
12.
Structure ; 25(8): 1208-1221.e5, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28669633

RESUMEN

Fibrillin-1 (FBN1) mutations associated with Marfan syndrome lead to an increase in transforming growth factor ß (TGF-ß) activation in connective tissues resulting in pathogenic changes including aortic dilatation and dissection. Since FBN1 binds latent TGF-ß binding proteins (LTBPs), the major reservoir of TGF-ß in the extracellular matrix (ECM), we investigated the structural basis for the FBN1/LTBP1 interaction. We present the structure of a four-domain FBN1 fragment, EGF2-EGF3-Hyb1-cbEGF1 (FBN1E2cbEGF1), which reveals a near-linear domain organization. Binding studies demonstrate a bipartite interaction between a C-terminal LTBP1 fragment and FBN1E2cbEGF1, which lies adjacent to the latency-associated propeptide (LAP)/TGF-ß binding site of LTBP1. Modeling of the binding interface suggests that, rather than interacting along the longitudinal axis, LTBP1 anchors itself to FBN1 using two independent epitopes. As part of this mechanism, a flexible pivot adjacent to the FBN1/LTBP1 binding site allows LTBP1 to make contacts with different ECM networks while presumably facilitating a force-induced/traction-based TGF-ß activation mechanism.


Asunto(s)
Fibrilina-1/química , Proteínas de Unión a TGF-beta Latente/química , Sitios de Unión , Fibrilina-1/metabolismo , Humanos , Proteínas de Unión a TGF-beta Latente/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
13.
Biomol NMR Assign ; 8(1): 75-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23264024

RESUMEN

Fibrillins are extracellular, disulphide-rich glycoproteins that form 10-12 nm diameter microfibrils in connective tissues. They are found in the majority of higher animals, from jellyfish to humans. Fibrillin microfibrils confer properties of elasticity and strength on connective tissue and regulate growth factor availability in the extracellular matrix (ECM). Mutations in FBN1, the human gene encoding the fibrillin-1 isoform, are linked to several inherited connective tissue disorders. The fibrillin-1 N-terminus forms many functionally-important interactions, both with other fibrillin molecules and various ECM components. In particular, the first four domains, the fibrillin unique N-terminal (FUN) and three epidermal growth factor (EGF)-like domains (FUN-EGF3), are implicated in microfibril assembly and growth factor sequestration. The structure of these domains, which comprise 134 residues, is unknown. We have produced a recombinant fragment corresponding to this region of human fibrillin-1. Here, we report (1)H, (13)C and (15)N resonance assignments of the FUN-EGF3 fragment. Assignments will facilitate structure determination, analysis of interdomain dynamics and the mapping of interaction surfaces.


Asunto(s)
Proteínas de Microfilamentos/química , Resonancia Magnética Nuclear Biomolecular , Isótopos de Carbono , Fibrilina-1 , Fibrilinas , Humanos , Hidrógeno , Isótopos de Nitrógeno , Estructura Terciaria de Proteína
14.
Biomol NMR Assign ; 8(1): 189-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23649688

RESUMEN

Fibrillins are large extracellular glycoproteins that form the principal component of microfibrils. These perform a vital structural function in the extracellular matrix of many tissues. Fibrillins have also been implicated in mediating a number of protein-protein interactions, some of which may be significant in regulating growth factors such as transforming growth factor ß. Here we present the backbone and side-chain (1)H, (13)C and (15)N assignments for a 19 kDa protein fragment derived from the N-terminus of human fibrillin-1, encompassing four domains in total. These domains include the second and third epidermal growth factor-like (EGF) domains, the first hybrid domain (hyb1), and the first calcium-binding EGF domain of fibrillin-1. This region of fibrillin-1 is of particular interest as the hyb1 domain has been suggested to play a role in microfibril assembly, as well as several other protein-protein interactions.


Asunto(s)
Calcio/metabolismo , Factor de Crecimiento Epidérmico/química , Proteínas de Microfilamentos/química , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Isótopos de Carbono , Fibrilina-1 , Fibrilinas , Humanos , Hidrógeno , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Estructura Terciaria de Proteína
15.
Structure ; 21(10): 1743-56, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24035709

RESUMEN

The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly.


Asunto(s)
Heparitina Sulfato/química , Microfibrillas/química , Proteínas de Microfilamentos/química , Secuencia de Aminoácidos , Secuencia Conservada , Fibrilina-1 , Fibrilinas , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína
16.
Structure ; 20(2): 215-25, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22325771

RESUMEN

Force-bearing tissues such as blood vessels, lungs, and ligaments depend on the properties of elasticity and flexibility. The 10 to 12 nm diameter fibrillin microfibrils play vital roles in maintaining the structural integrity of these highly dynamic tissues and in regulating extracellular growth factors. In humans, defective microfibril function results in several diseases affecting the skin, cardiovascular, skeletal, and ocular systems. Despite the discovery of fibrillin-1 having occurred more than two decades ago, the structure and organization of fibrillin monomers within the microfibrils are still controversial. Recent structural data have revealed strategies by which fibrillin is able to maintain its architecture in dynamic tissues without compromising its ability to interact with itself and other cell matrix components. This review summarizes our current knowledge of microfibril structure, from individual fibrillin domains and the calcium-dependent tuning of pairwise interdomain interactions to microfibril dynamics, and how this relates to microfibril function in health and disease.


Asunto(s)
Microfibrillas/química , Proteínas de Microfilamentos/química , Secuencias de Aminoácidos , Animales , Calcio/química , Elasticidad , Fibrilina-1 , Fibrilinas , Humanos , Microfibrillas/genética , Microfibrillas/patología , Proteínas de Microfilamentos/genética , Modelos Moleculares , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
17.
J Mol Biol ; 401(4): 605-17, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20599547

RESUMEN

FBLN5 encodes fibulin-5, an extracellular matrix calcium-binding glycoprotein that is essential for elastic fibre formation. FBLN5 mutations are associated with two distinct human diseases, age-related macular degeneration (AMD) and cutis laxa (CL), but the biochemical basis for the pathogenic effects of these mutations is poorly understood. Two missense mutations found in AMD patients (I169T and G267S) and two missense mutations found in CL patients (G202R and S227P) were analysed in a native-like context in recombinant fibulin-5 fragments. Limited proteolysis, NMR spectroscopy and chromophoric calcium chelation experiments showed that the G267S and S227P substitutions cause long-range structural effects consistent with protein misfolding. Cellular studies using fibroblast cells further demonstrated that these recombinant forms of mutant fibulin-5 were not present in the extracellular medium, consistent with retention. In contrast, no significant effects of I169T and G202R substitutions on protein fold and secretion were identified. These data establish protein misfolding as a causative basis for the effects of G267S and S227P substitutions in AMD and CL, respectively, and raise the possibility that the I169T and G202R substitutions may be polymorphisms or may increase susceptibility to disease.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Cutis Laxo/genética , Cutis Laxo/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación Missense , Conformación Proteica , Pliegue de Proteína
18.
Biochem Soc Trans ; 36(Pt 2): 257-62, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18363569

RESUMEN

Human fibrillin-1 is the major structural protein of extracellular matrix 10-12 nm microfibrils. It has a disulfide-rich modular organization which consists primarily of cbEGF (Ca(2+)-binding epidermal growth factor-like) domains and TB (transforming growth factor beta-binding protein-like) domains. TB4 contains an RGD (Arg-Gly-Asp) integrin-binding motif. The atomic structure of this region has been solved by X-ray crystallography and shows the TB4 and flanking cbEGF domains to be arranged as a tetragonal pyramid with N- and C-termini exposed at opposite ends of the fragment. The RGD integrin-binding motif is located within a flexible loop. We have used a variety of biophysical, biochemical and cell biology methods to investigate the molecular properties of integrin-fibrillin-1 interactions and have demonstrated that recombinant fibrillin-1 domain fragments mediate binding to integrins alphaVbeta3, alpha5beta1 and alphaVbeta6. Integrin alphaVbeta3 is a high-affinity fibrillin-1 receptor (K(d) approximately 40 nM), whereas integrins alphaVbeta6 and alpha5beta1 show moderate-affinity (K(d) approximately 450 nM) and low-affinity (K(d) >1 microM) binding respectively. Different patterns of alpha5beta1 distribution are seen when human keratinocytes and fibroblasts are plated on to fibrillin domain fragments compared with those seen for fibronectin, suggesting that fibrillin may cause a lesser degree or different type of intracellular signalling. A number of disease-causing mutations which affect the TB4 domain have been identified. These are being investigated for their effects on integrin binding and/or changes in intramolecular structure.


Asunto(s)
Integrinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Cristalografía por Rayos X , Fibrilina-1 , Fibrilinas , Humanos , Integrinas/química , Proteínas de Microfilamentos/química , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/metabolismo
19.
Nat Struct Mol Biol ; 15(8): 849-57, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18660822

RESUMEN

The Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding region of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1(DSL-EGF3)). The structure reveals a highly conserved face of the DSL domain, and we show, by functional analysis of Drosophila melanogster ligand mutants, that this surface is required for both cis- and trans-regulatory interactions with Notch. We also identify, using NMR, a surface of Notch-1 involved in J-1(DSL-EGF3) binding. Our data imply that cis- and trans-regulation may occur through the formation of structurally distinct complexes that, unexpectedly, involve the same surfaces on both ligand and receptor.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/química , Receptor Notch1/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína Jagged-1 , Ligandos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Serrate-Jagged , Transducción de Señal
20.
J Biol Chem ; 280(14): 14076-84, 2005 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15649891

RESUMEN

The calcium-binding epidermal growth factor-like (cbEGF) domain is a common structural motif in extracellular and transmembrane proteins. K(d) values for Ca2+ vary from the millimolar to nanomolar range; however the molecular basis for this variation is poorly understood. We have measured K(d) values for six fibrillin-1 cbEGF domains, each preceded by a transforming growth factor beta-binding protein-like (TB) domain. Using NMR and titration with chromophoric chelators, we found that K(d) values varied by five orders of magnitude. Interdomain hydrophobic contacts between TB-cbEGF domains were studied by site-directed mutagenesis and could be correlated directly with Ca2+ affinity. Furthermore, in TB-cbEGF pairs that displayed high-affinity binding, NMR studies showed that TB-cbEGF interface formation was strongly Ca2+-dependent. We suggest that Ca2+ affinity is a measure of interface formation in both homologous and heterologous cbEGF domain pairs, thus providing a measure of flexibility in proteins with multiple cbEGF domains. These data highlight the versatile role of the cbEGF domain in fine tuning the regional flexibility of proteins and provide new constraints for the organization of fibrillin-1 within 10-12-nm microfibrils of the extracellular matrix.


Asunto(s)
Calcio/metabolismo , Proteínas de Microfilamentos/química , Conformación Proteica , Secuencia de Aminoácidos , Factor de Crecimiento Epidérmico/metabolismo , Fibrilina-1 , Fibrilinas , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA