Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377215

RESUMEN

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

2.
Small ; 20(23): e2307032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38145359

RESUMEN

Perovskite nanocrystals (NCs) have emerged as a promising building block for the fabrication of optic-/optoelectronic-/electronic devices owing to their superior characteristics, such as high absorption coefficient, rapid ion mobilities, and tunable energy levels. However, their low structural stability and poor surface passivation have restricted their application to next-generation devices. Herein, a drug delivery system (DDS)-inspired post-treatment strategy is reported for improving their structural stability by doping of Ag into CsPbBr3 (CPB) perovskite NCs; delivery to damaged sites can promote their structural recovery slowly and uniformly, averting the permanent loss of their intrinsic characteristics. Ag NCs are designed through surface-chemistry tuning and structural engineering to enable their circulation in CPB NC dispersions, followed by their delivery to the CPB NC surface, defect-site recovery, and defect prevention. The perovskite-structure healing process through the DDS-type process (with Ag NCs as the drug) is analyzed by a combination of theoretical calculations (with density functional theory) and experimental analyses. The proposed DDS-inspired healing strategy significantly enhances the optical properties and stability of perovskite NCs, enabling the fabrication of white light-emitting diodes.

3.
Acta Radiol ; 64(8): 2393-2400, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37211615

RESUMEN

BACKGROUND: The reference protocol for the quantification of coronary artery calcium (CAC) should be updated to meet the standards of modern imaging techniques. PURPOSE: To assess the influence of filtered-back projection (FBP), hybrid iterative reconstruction (IR), and three levels of deep learning reconstruction (DLR) on CAC quantification on both in vitro and in vivo studies. MATERIAL AND METHODS: In vitro study was performed with a multipurpose anthropomorphic chest phantom and small pieces of bones. The real volume of each piece was measured using the water displacement method. In the in vivo study, 100 patients (84 men; mean age = 71.2 ± 8.7 years) underwent CAC scoring with a tube voltage of 120 kVp and image thickness of 3 mm. The image reconstruction was done with FBP, hybrid IR, and three levels of DLR including mild (DLRmild), standard (DLRstd), and strong (DLRstr). RESULTS: In the in vitro study, the calcium volume was equivalent (P = 0.949) among FBP, hybrid IR, DLRmild, DLRstd, and DLRstr. In the in vivo study, the image noise was significantly lower in images that used DLRstr-based reconstruction, when compared images other reconstructions (P < 0.001). There were no significant differences in the calcium volume (P = 0.987) and Agatston score (P = 0.991) among FBP, hybrid IR, DLRmild, DLRstd, and DLRstr. The highest overall agreement of Agatston scores was found in the DLR groups (98%) and hybrid IR (95%) when compared to standard FBP reconstruction. CONCLUSION: The DLRstr presented the lowest bias of agreement in the Agatston scores and is recommended for the accurate quantification of CAC.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interpretación de Imagen Radiográfica Asistida por Computador , Anciano , Humanos , Masculino , Persona de Mediana Edad , Algoritmos , Calcio , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Aprendizaje Profundo , Fantasmas de Imagen , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Femenino
4.
J Comput Assist Tomogr ; 46(5): 729-734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36103677

RESUMEN

OBJECTIVE: This study aimed to evaluate chest computed tomography (CT) angiography image quality using the contrast enhancement (CE)-boost technique compared with conventional images. METHODS: Forty patients who underwent contrast-enhanced chest CT were included. Combined CT angiography images of the iodinated image obtained from the subtraction of nonenhanced CT images and CT angiography images were used to generate CE-boost images. Computed tomography attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) for the right and left pulmonary arteries as the central and subsegmental arteries as peripheral vessels were assessed. Subjective image quality was rated on a 5-point scale by 2 radiologists. Image quality was assessed using a paired t test. RESULTS: Computed tomography attenuation in the main pulmonary artery was significantly higher for the CE-boost images (311.05 ± 91.94) than for the conventional images (221.25 ± 61.21, P < 0.001). Similarly, the CE-boost images resulted in significantly higher CT attenuation in the subsegmental arteries (right, 305.34 ± 90.13; left, 313.05 ± 97.21) than in the conventional images (right, 218.45 ± 63.16; left, 223.89 ± 74.27). The CE-boost technique demonstrated marked improvement in the visualization of the peripheral pulmonary artery without the administration of a higher iodine delivery rate. The mean SNR and CNR were also significantly higher in the central and peripheral vessels in the CE-boost images than in the conventional images (P < 0.001). In the subjective analysis, the image contrast and vascular contrast edge were significantly higher for the CE-boost images than for conventional images (P < 0.001). CONCLUSIONS: The CE-boost technique increases not only the visualization of peripheral arteries by improving vascular attenuation but also the SNR and CNR.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Angiografía , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos
5.
Br J Radiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917414

RESUMEN

OBJECTIVES: To investigate the usefulness of super-resolution deep learning reconstruction (SR-DLR) with cardiac option in the assessment of image quality in patients with stent-assisted coil embolization, coil embolization, and flow-diverting stent placement compared with other image reconstructions. METHODS: This single-center retrospective study included fifty patients (mean age, 59 years; range, 44-81 years; 13 men) who were treated with stent-assisted coil embolization, coil embolization, and flow-diverting stent placement between January and July 2023. The images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR), and SR-DLR. The objective image analysis included image noise in the Hounsfield unit (HU), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and full width at half maximum (FWHM). Subjectively, two radiologists evaluated the overall image quality for the visualization of the flow-diverting stent, coil, and stent. RESULTS: The image noise in HU in SR-DLR was 6.99 ± 1.49, which was significantly lower than that in images reconstructed with FBP (12.32 ± 3.01) and hybrid IR (8.63 ± 2.12) (p < 0.001). Both the mean SNR and CNR were significantly higher in SR-DLR than in FBP and hybrid IR (p < 0.001 and p < 0.001). The FWHMs for the stent (p < 0.004), flow-diverting stent (p < 0.001), and coil (p < 0.001) were significantly lower in SR-DLR than in FBP and hybrid IR. The subjective visual scores were significantly higher in SR-DLR than in other image reconstructions (p < 0.001). CONCLUSIONS: SR-DLR with cardiac option is useful for follow-up imaging in stent-assisted coil embolization and flow-diverting stent placement in terms of lower image noise, higher SNR and CNR, superior subjective image analysis, and less blooming artifact than other image reconstructions. ADVANCES IN KNOWLEDGE: SR-DLR with cardiac option allow better visualization of the peripheral and smaller cerebral arteries. SR-DLR with cardiac option can be beneficial for CT imaging of stent-assisted coil embolization and flow-diverting stent.

6.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38138355

RESUMEN

In this study, we explored the formation of micro-/nanosized porous structures on the surface of a needle composed of STS304 and examined the effect of conventional needles and needles capable of liquid ejection. Aqua regia, composed of HCl and HNO3, was electrochemically etched to form appropriately sized micro-/nanoporous structures. We observed that when dispensing liquids with low surface tension, they do not immediately fall downward but instead spread over the exterior surface of the needle before falling. We found that the extent of spreading on the surface is influenced by an etched porous structure. Furthermore, to analyze the effect of surface tension differences, we dispensed liquids with varying surface tensions using etched needles. Through the analysis, it was confirmed that, despite the low surface tension, the ejected droplet volume and speed could be stably maintained on the etched needle. This indicates that the spreading phenomenon of the liquid on the needle surface just before ejection can be controlled by the micro/nanoporous structure. We anticipate that these characteristics of etched needles could be utilized in industries where precision dispensing of low-surface-tension liquids is essential.

7.
Diagnostics (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37296714

RESUMEN

BACKGROUND: In coronary computed tomography angiography (CCTA), the main issue of image quality is noise in obese patients, blooming artifacts due to calcium and stents, high-risk coronary plaques, and radiation exposure to patients. OBJECTIVE: To compare the CCTA image quality of deep learning-based reconstruction (DLR) with that of filtered back projection (FBP) and iterative reconstruction (IR). METHODS: This was a phantom study of 90 patients who underwent CCTA. CCTA images were acquired using FBP, IR, and DLR. In the phantom study, the aortic root and the left main coronary artery in the chest phantom were simulated using a needleless syringe. The patients were classified into three groups according to their body mass index. Noise, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR) were measured for image quantification. A subjective analysis was also performed for FBP, IR, and DLR. RESULTS: According to the phantom study, DLR reduced noise by 59.8% compared to FBP and increased SNR and CNR by 121.4% and 123.6%, respectively. In a patient study, DLR reduced noise compared to FBP and IR. Furthermore, DLR increased the SNR and CNR more than FBP and IR. In terms of subjective scores, DLR was higher than FBP and IR. CONCLUSION: In both phantom and patient studies, DLR effectively reduced image noise and improved SNR and CNR. Therefore, the DLR may be useful for CCTA examinations.

8.
PLoS One ; 18(4): e0284793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079597

RESUMEN

BACKGROUND AND PURPOSE: This study aimed to investigate the potential of contrast enhancement (CE)-boost technique in the head and neck computed tomography (CT) angiography in terms of the objective and subjective image quality. MATERIALS AND METHODS: Consecutive patients who underwent head and neck CT angiography between May 2022 and July 2022 were included. The CE-boost images were generated by combining the subtracted iodinated image and contrast-enhanced image. The objective image analysis was compared for each image with and without CE-boost technique using the CT attenuation, image noise, signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), and image sharpness (full width at half width maximum, FWHM). The subjective image analysis was evaluated by two independent experienced radiologists in the following aspects: the overall image quality, motion artifact, vascular delineation, and vessel sharpness. RESULTS: A total of 65 patients (mean age, 59.48 ± 13.71 years; range, 24-87 years; 36 women) were included. The CT attenuation of the vertebrobasilar arteries was significantly (p < 0.001) higher in the images obtained using CE-boost technique than in conventional images. Image noise was significantly (p < 0.001) lower for CE-boost images (6.09 ± 1.93) than for conventional images (7.79 ± 1.73). Moreover, CE-boost technique yielded higher SNR (64.43 ± 17.17 vs. 121.37 ± 38.77, p < 0.001) and CNR (56.90 ± 18.79 vs. 116.65 ± 57.44, p < 0.001) than conventional images. CE-boost resulted in shorter FWHM than conventional images (p < 0.001). Higher subjective image quality scores were also demonstrated by the CE-boost than images without CE-boost technique. CONCLUSIONS: In both objective and subjective image analysis, the CE-boost technique provided higher image quality without increasing the flow rate and concentration of contrast media in the head and neck CT angiography. Furthermore, the vessel completeness and delineation were superior in CE-boost images than in conventional images.


Asunto(s)
Angiografía por Tomografía Computarizada , Medios de Contraste , Humanos , Femenino , Persona de Mediana Edad , Anciano , Angiografía por Tomografía Computarizada/métodos , Tomografía Computarizada por Rayos X/métodos , Cabeza/diagnóstico por imagen , Relación Señal-Ruido , Angiografía , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos
9.
Nanoscale ; 14(24): 8628-8639, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35660846

RESUMEN

Anti-interference characteristics, whereby undesirable signal interference is minimized, are required for multifunctional sensor platforms. In this study, an anti-temperature-interference resistive-type strain sensor, which does not respond to temperature but only to strain, is designed. Anti-interference properties were achieved by modulating the temperature coefficient of resistance (TCR) of metal nanoparticles (NPs) through hybrid chemical treatment with organic and halide ligands that induce negative and positive TCRs, respectively. Consequently, a very low TCR of 1.9 × 10-5 K-1 was obtained. To investigate the origin of this near-zero TCR, analyses of correlated electrical, thermal, and mechanical properties were performed in addition to structural characterization and analysis. Density functional theory calculations and electrical percolation modeling were performed to illuminate the transport behavior in the near-zero-TCR NP thin films. Finally, we fabricated a high-performance anti-temperature-interference strain sensor using a solution process. The sensors detect a variety of strains, including those arising from large movements, such as wrist and knee movements, and fine movements, such as artery pulses or movements made during calligraphy, and did not respond to temperature changes.

10.
ACS Nano ; 15(5): 8120-8129, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33792304

RESUMEN

In this study, non-temperature interference strain gauge sensors, which are only sensitive to strain but not temperature, are developed by engineering the properties and structure from a material perspective. The environmental interference from temperature fluctuations is successfully eliminated by controlling the charge transport in nanoparticles with thermally expandable polymer substrates. Notably, the negative temperature coefficient of resistance (TCR), which originates from the hopping transport in nanoparticle arrays, is compensated by the positive TCR of the effective surface thermal expansion with anchoring effects. This strategy successfully controls the TCR from negative to positive. A near-zero TCR (NZTCR), less than 1.0 × 10-6 K-1, is achieved through precisely controlled expansion. Various characterization methods and finite element and transport simulations are conducted to investigate the correlated electrical, mechanical, and thermal properties of the materials and elucidate the compensated NZTCR mechanism. With this strategy, an all-solution-processed, transparent, highly sensitive, and noninterference strain sensor is fabricated with a gauge factor higher than 5000 at 1% strain, as demonstrated by pulse and motion sensing, as well as the noninterference property under variable-temperature conditions. It is envisaged that the sensor developed herein is applicable to multifunctional wearable sensors or e-skins for artificial skin or robots.

11.
ACS Appl Mater Interfaces ; 13(5): 6394-6403, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33512146

RESUMEN

In this study, a self-sorting sensor was developed with the ability to distinguish between different pressure regimes and translate the pressure to electrical signals. Specifically, the self-sorting sensor can distinguish between soft and hard pressure like the human skin, without any software assistance and complicated circuits. To achieve the self-sorting property, Janus-like jagged structures were prepared via an all-solution process of spontaneous chemical patterning; they comprised electrically semi-insulating vertices and highly conductive valleys. This unique structure facilitates the detection and determination of the intensities and types of pressure by providing a significant gap between the current levels of two types of states, similar to the function of fibers in the human tactile system. The fabricated sensors also exhibit high sensitivity and durability as well as low power consumption, as demonstrated by the electronic skin and ternary Morse signal applications. Compared with conventional wearable pressure sensors, this sensor can detect signals without additional programming; thus, it is highly suitable for delay-sensitive, energy-efficient sensor applications such as driverless vehicles, autonomous artificial intelligence technology, and prosthetic devices.


Asunto(s)
Inteligencia Artificial , Nanopartículas/química , Tacto , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Tamaño de la Partícula , Propiedades de Superficie
12.
ACS Nano ; 15(10): 15667-15675, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34495639

RESUMEN

Next-generation devices and systems require the development and integration of advanced materials, the realization of which inevitably requires two separate processes: property engineering and patterning. Here, we report a one-step, ink-lithography technique to pattern and engineer the properties of thin films of colloidal nanocrystals that exploits their chemically addressable surface. Colloidal nanocrystals are deposited by solution-based methods to form thin films and a local chemical treatment is applied using an ink-printing technique to simultaneously modify (i) the chemical nature of the nanocrystal surface to allow thin-film patterning and (ii) the physical electronic, optical, thermal, and mechanical properties of the nanocrystal thin films. The ink-lithography technique is applied to the library of colloidal nanocrystals to engineer thin films of metals, semiconductors, and insulators on both rigid and flexible substrates and demonstrate their application in high-resolution image replications, anticounterfeit devices, multicolor filters, thin-film transistors and circuits, photoconductors, and wearable multisensors.

13.
Hum Mutat ; 31(7): 788-93, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20506135

RESUMEN

In a previous study, we found SOHLH1 (spermatogenesis and oogenesis-specific basic helix-loop-helix 1) as the first testis-specific basic helix-loop-helix transcription factor essential for spermatogonial differentiation. SOHLH1 therefore represents an excellent candidate gene for testicular failure such as nonobstructive azoospermia (NOA). We analyzed whether there were mutations in the SOHLH1 gene in 96 Korean patients with NOA. The sequence analysis discovered three novel variations: one intronic variant (c.346-1G>A), and two nonsynonymous exonic variants (c.91T>C and c.529C>A) with known single nucleotide polymorphisms (SNPs), which included six intronic variants, two synonymous, and two nonsynonymous variants. We examined the consequences of mutations in SOHLH1 using in vivo and in vitro assays. Analysis of transcripts from minigenes carrying the c.346-1G>A revealed that splicing site variation leads to the partial deletion at a cryptic splicing site within exon 4. This deletion results in SOHLH1 with a truncated bHLH domain. Transient transfection assay showed that the SOHLH1 mutant with the truncated domain disrupted the transcriptional activity of KIT promoter, whereas two missense mutations harboring either p.Arg37Gln or p.Pro269Ser did not have a significant effect on its transactivation. Our findings indicate that a splice-acceptor site mutation that probably causes a nonfunctional SOHLH1 protein results in nonobstructive azoospermia by the lack of normal spermatogenesis.


Asunto(s)
Azoospermia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Predisposición Genética a la Enfermedad , Mutación , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Análisis Mutacional de ADN , Exones/genética , Femenino , Eliminación de Gen , Humanos , Intrones/genética , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Empalme de ARN/genética , Homología de Secuencia de Aminoácido , Testículo/metabolismo , Testículo/patología , Transfección
14.
ACS Appl Mater Interfaces ; 12(49): 54763-54772, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33251797

RESUMEN

In this study, multifunctional light-emitting and passive radiative cooling (LEPC) materials and devices are designed by embedding chemically designed perovskite nanocrystals (NCs) into the radiative polymer layer. Lead halide perovskite NCs are chosen as the light-emitting material, owing to their high photon radiation rate and low phonon generation. To integrate the perovskite NCs into the radiative polymer layers, a surface passivation is achieved by coating the NCs with silica. The silica shell synergistically improves the chemical stability and cooling efficiency. Both outdoor experimental and simulation results demonstrate that the fabricated LEPC devices show better cooling performance than conventional cooling devices. The LEPC devices are easily patterned by utilizing pixelating, assembling, and simple cutting or drawing techniques with the LEPC materials. This study also demonstrates the potential applications of these materials as components of smart building systems, in smart window displays, or for anticounterfeiting cooling systems, thus proving the practicality of these multifunctional LEPC devices.

15.
RSC Adv ; 10(12): 7126-7133, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35493861

RESUMEN

This study represents the heating-up synthesis of lead-free cesium bismuth bromide perovskite nanocrystals (NCs). CsBr and BiBr3 precursors are used to synthesize uniform and phase-pure cesium bismuth bromide NCs, and the reaction is performed via an injection-free, heating-up method in the presence of a solvent mixture with a high boiling point. The size and composition of cesium bismuth bromide NCs are readily controlled by changing the reaction time, temperature, and amount of surfactant added to the reaction mixture. Upon heating, sequential phase evolution occurs, resulting in the formation of kinetically stable BiOBr in the early reaction stages, which transformed into the thermodynamically stable Cs3BiBr6 and Cs3Bi2Br9 with an increase in either the reaction time or the reaction temperature. Furthermore, the absorption and photoluminescence properties of Cs3BiBr6 and Cs3Bi2Br9 NCs are characterized to investigate their composition-dependent optical properties. This work provides the potential to synthesize various types of lead-free perovskite NCs by tailoring the size and compositions.

16.
Nanoscale Horiz ; 5(6): 960-970, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32266901

RESUMEN

Post-synthesis engineering methods that employ oriented attachment to precisely control the size and dimensionality (0D/1D/2D) of as-synthesized CsPbBr3 nanocrystals (NCs) are demonstrated. We investigated the chemical effects of the properties of polar solvents, including their immiscibility, polarity, and boiling point, on the surfaces of NCs, as well as their effect on the structural and optical properties of NCs. Appropriate exploitation of the solvent properties made it possible to use a polar solvent to mildly affect the NCs indirectly such that they discarded their ligands and became attached to proximal NCs without being destroyed. Based on our observations, we developed a method whereby a solution of the NCs in a non-polar solvent is mixed with a polar solvent to form an immiscible phase to induce epitaxial growth of CsPbBr3 NCs. The method enables the size of NCs to be easily regulated from 5 to 50 nm by controlling the engineering time. Taking advantage of the minimal effect of a mild solvent, we also developed a self-assembly method that operates at the liquid-air interface to systematically control the dimensionality. At this interface, the NCs self-assemble in the horizontal direction and grow into micron-sized, single-crystalline, defect-free nanowires (1D) and nanoplates (2D) via oriented attachment. Finally, we discuss the origin of the non-destructive oriented attachment phenomenon and the surface chemistry of a perovskite NC using density functional theory (DFT) simulations and a proposed model system.

17.
Nano Converg ; 6(1): 10, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30937630

RESUMEN

In recent times, wearable sensors have attracted significant attention in various research fields and industries. The rapid growth of the wearable sensor related research and industry has led to the development of new devices and advanced applications such as bio-integrated devices, wearable health care systems, soft robotics, and electronic skins, among others. Nanocrystals (NCs) are promising building blocks for the design of novel wearable sensors, due to their solution processability and tunable properties. In this paper, an overview of NC synthesis, NC thin film fabrication, and the functionalization of NCs for wearable applications (strain sensors, pressure sensors, and temperature sensors) are provided. The recent development of NC-based strain, pressure, and temperature sensors is reviewed, and a discussion on their strategies and operating principles is presented. Finally, the current limitations of NC-based wearable sensors are discussed, in addition to methods to overcome these limitations.

18.
Nanoscale ; 11(37): 17498-17505, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31532437

RESUMEN

The popularity of colloidal quantum dot (CQD) solar cells has increased owing to their tunable bandgap, multiple exciton generation, and low-cost solution processes. ZnO nanoparticle (NP) layers are generally employed as electron transport layers in CQD solar cells to efficiently extract the electrons. However, trap sites and the unfavorable band structure of the as-synthesized ZnO NPs have hindered their potential performance. Herein, we introduce a facile method of ZnO NP annealing in the colloidal state. Electrical, structural, and optical analyses demonstrated that the colloidal-annealing of ZnO NPs effectively passivated the defects and simultaneously shifted their band diagram; therefore, colloidal-annealing is a more favorable method as compared to conventional film-annealing. These CQD solar cells based on colloidal-annealed ZnO NPs exhibited efficient charge extraction, reduced recombination and achieved an enhanced power conversion efficiency (PCE) of 9.29%, whereas the CQD solar cells based on ZnO NPs without annealing had a PCE of 8.05%. Moreover, the CQD solar cells using colloidal-annealed ZnO NPs exhibited an improved air stability with 98% retention after 120 days, as compared to that of CQD solar cells using non-annealed ZnO NPs with 84% retention.

19.
ACS Appl Mater Interfaces ; 7(28): 15442-6, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26132513

RESUMEN

We report on the unusual behavior of threshold voltage turnaround in a hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) when biased under extremely high intensity illumination. The threshold voltage shift changes from negative to positive gate bias direction after ∼30 min of bias stress even when the negative gate bias stress is applied under high intensity illumination (>400 000 Cd/cm(2)), which has not been observed in low intensity (∼6000 Cd/cm(2)). This behavior is more pronounced in a low work function gate metal structure (Al: 4.1-4.3 eV), compared to the high work function of Cu (4.5-5.1 eV). Also this is mainly observed in shorter wavelength of high photon energy illumination. However, this behavior is effectively prohibited by embedding the high energy band gap (∼8.6 eV) of SiOx in the gate insulator layer. These imply that this behavior could be originated from the injection of electrons from gate electrode, transported and trapped in the electron trap sites of the SiNx/a-Si:H interface, which causes the shift of threshold voltage toward positive gate bias direction. The results reported here can be applicable to the large-sized outdoor displays which are usually exposed to the extremely high intensity illumination.

20.
Dev Reprod ; 16(4): 379-84, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25949113

RESUMEN

Lhx8 (LIM homeobox 8) gene encodes a LIM homeodomain transcriptional regulator that is preferentially expressed in germ cells and critical for mammalian folliculogenesis. However, Lhx8 DNA binding sequences are not characterized yet. We aimed to identify and characterize a cis-acting sequence of germ-cell specific transcriptional factor, Lhx8. To identify Lhx8 DNA binding element, Cyclic Amplification of Sequence Target (CAST) Analysis was performed. Electrophoretic Mobility Shift Assay (EMSA) was processed for the binding specificity of Lhx8. Luciferase assay was for the transcriptional activity of Lhx8 through identified DNA binding site. We identified a putative cis-acting sequence, TGATTG as Lhx8 DNA binding element (LBE). In addition, Lhx8 binds to the LBE with high affinity and augments transcriptional activity of luciferase reporter driven by artificial promoter containing the Lhx8 binding element. These findings indicate that Lhx8 directly regulates the transcription of genes containing Lhx8 binding element in oocytes during early folliculogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA