Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 92: 129390, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369329

RESUMEN

Naturally occurring homoisoflavonoids have attracted significant attention in the field of medicinal chemistry due to their potential health benefits and diverse range of biological properties. Recently, C-prenylated homoisoflavonoids, namely ledebourin A, B, and C, were isolated from the bulbs of Ledebouria floribunda and have exhibited potent antioxidant activity. In this study, we successfully synthesized ledebourin A and its regioisomer, compounds 1 and 9. By comparing the NMR spectra of the synthesized compounds with those of reported ledebourin A, we observed discrepancies. Nonetheless, our synthesis and subsequent findings offer valuable insights into the structural revision and biological activities of these unique prenylated homoisoflavonoids. Both synthesized compounds 1 and 9 exhibited no toxicity towards Hep-G2 cells and displayed the ability to recover glyceraldehyde-induced cell death, suggesting their potential as protective agents against liver damage.


Asunto(s)
Isoflavonas , Isoflavonas/química , Antioxidantes/química , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
2.
Front Bioeng Biotechnol ; 11: 1305023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026892

RESUMEN

The cell spheroid technology, which greatly enhances cell-cell interactions, has gained significant attention in the development of in vitro liver models. However, existing cell spheroid technologies still have limitations in improving hepatocyte-extracellular matrix (ECM) interaction, which have a significant impact on hepatic function. In this study, we have developed a novel bioprinting technology for decellularized ECM (dECM)-incorporated hepatocyte spheroids that could enhance both cell-cell and -ECM interactions simultaneously. To provide a biomimetic environment, a porcine liver dECM-based cell bio-ink was developed, and a spheroid printing process using this bio-ink was established. As a result, we precisely printed the dECM-incorporated hepatocyte spheroids with a diameter of approximately 160-220 µm using primary mouse hepatocyte (PMHs). The dECM materials were uniformly distributed within the bio-printed spheroids, and even after more than 2 weeks of culture, the spheroids maintained their spherical shape and high viability. The incorporation of dECM also significantly improved the hepatic function of hepatocyte spheroids. Compared to hepatocyte-only spheroids, dECM-incorporated hepatocyte spheroids showed approximately 4.3- and 2.5-fold increased levels of albumin and urea secretion, respectively, and a 2.0-fold increase in CYP enzyme activity. These characteristics were also reflected in the hepatic gene expression levels of ALB, HNF4A, CPS1, and others. Furthermore, the dECM-incorporated hepatocyte spheroids exhibited up to a 1.8-fold enhanced drug responsiveness to representative hepatotoxic drugs such as acetaminophen, celecoxib, and amiodarone. Based on these results, it can be concluded that the dECM-incorporated spheroid printing technology has great potential for the development of highly functional in vitro liver tissue models for drug toxicity assessment.

3.
Biofabrication ; 14(3)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35334470

RESUMEN

In vitrocancer models that can simulate patient-specific drug responses for personalized medicine have attracted significant attention. However, the technologies used to produce such models can only recapitulate the morphological heterogeneity of human cancer tissue. Here, we developed a novel 3D technique to bioprint anin vitrobreast cancer model with patient-specific morphological features. This model can precisely mimic the cellular microstructures of heterogeneous cancer tissues and produce drug responses similar to those of human cancers. We established a bioprinting process for generating cancer cell aggregates with ductal and solid tissue microstructures that reflected the morphology of breast cancer tissues, and applied it to develop breast cancer models. The genotypic and phenotypic characteristics of the ductal and solid cancer aggregates bioprinted with human breast cancer cells (MCF7, SKBR3, MDA-MB-231) were respectively similar to those of early and advanced cancers. The bioprinted solid cancer cell aggregates showed significantly higher hypoxia (>8 times) and mesenchymal (>2-4 times) marker expressions, invasion activity (>15 times), and drug resistance than the bioprinted ductal aggregates. Co-printing the ductal and solid aggregates produced heterogeneous breast cancer tissue models that recapitulated three different stages of breast cancer tissue morphology. The bioprinted cancer tissue models representing advanced cancer were more and less resistant, respectively, to the anthracycline antibiotic doxorubicin and the hypoxia-activated prodrug tirapazamine; these were analogous to the results in human cancer. The present findings showed that cancer cell aggregates can mimic the pathological micromorphology of human breast cancer tissue and they can be bioprinted to produce breast cancer tissuein vitrothat can morphologically represent the clinical stage of cancer in individual patients.


Asunto(s)
Bioimpresión , Neoplasias de la Mama , Bioimpresión/métodos , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Hipoxia , Medicina de Precisión , Impresión Tridimensional , Ingeniería de Tejidos/métodos
4.
Essays Biochem ; 65(3): 467-480, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34223609

RESUMEN

Various cell aggregate culture technologies have been developed and actively applied to tissue engineering and organ-on-a-chip. However, the conventional culture technologies are labor-intensive, and their outcomes are highly user dependent. In addition, the technologies cannot be used to produce three-dimensional (3D) complex tissues. In this regard, 3D cell aggregate printing technology has attracted increased attention from many researchers owing to its 3D processability. The technology allows the fabrication of 3D freeform constructs using multiple types of cell aggregates in an automated manner. Technological advancement has resulted in the development of a printing technology with a high resolution of approximately 20 µm in 3D space. A high-speed printing technology that can print a cell aggregate in milliseconds has also been introduced. The developed aggregate printing technologies are being actively applied to produce various types of engineered tissues. Although various types of high-performance printing technologies have been developed, there are still some technical obstacles in the fabrication of engineered tissues that mimic the structure and function of native tissues. This review highlights the central importance and current technical level of 3D cell aggregate printing technology, and their applications to tissue/disease models, artificial tissues, and drug-screening platforms. The paper also discusses the remaining hurdles and future directions of the printing processes.


Asunto(s)
Bioimpresión , Evaluación Preclínica de Medicamentos , Impresión Tridimensional , Ingeniería de Tejidos/métodos
5.
J Hazard Mater ; 365: 494-501, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30466047

RESUMEN

Oil spills from disasters such as the sinking of ships and the discharge of oily wastes cause serious environmental problems. Polydimethylsiloxane(PDMS) sponges are valuable tools for isolating spilled oil. Here, we propose new PDMS sponges with bio-inspired design and enhanced absorption capacities. 3D printing was used to produce templates having negative designs, and after being filled with PDMS, the templates were selectively dissolved. Through this, PDMS sponges with well-interconnected and controlled porosities were produced within 10% error. The wettability of sponges with various pore sizes and line widths was investigated. The surfaces were found to be highly hydrophobic, with water contact angles of 100-143°, and oleophilic, with oil contact angles of ∼0°. The sponge fabricated with line width of 200 µm and pore size of 400 µm showed the highest hydrophobicity and oleophilicity. These parameters were used to produce the surfaces of hollow sponges having bio-inspired design that mimics the water absorption and storage functions of cactus. Repeated oil-water separation testing was conducted, and the absorption capacities were compared with those of non-hollow and conventional sponges. The new design showed absorption capacity up to 3.7 times that of the sponges. The bio-inspired PDMS sponge provides a significant advance in oil-water separation ability.

6.
Korean J Anesthesiol ; 59(1): 56-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20652001

RESUMEN

Massive pulmonary embolism is associated with significant perioperative morbidity and mortality. We report here on a case of a 69-year-old man who suffered a massive pulmonary embolism with pulseless electrical activity during knee arthroscopic surgery. After a diagnosis was made by performing transthoracic echocardiography, the patient was treated with recombinant tissue-type plasminogen activator. The patient was transferred to the intensive care unit after his hemodynamic status improved. The patient went on to make a full cardiopulmonary recovery without any complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA