Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 184(17): 4414-4429.e19, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416146

RESUMEN

Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.


Asunto(s)
Alphavirus/inmunología , Anticuerpos Antivirales/inmunología , Secuencia Conservada/inmunología , Epítopos/inmunología , Proteínas Virales/inmunología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Chlorocebus aethiops , Mapeo Epitopo , Epítopos/química , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/metabolismo , Células Vero , Proteínas Virales/química , Liberación del Virus
2.
Biochemistry ; 63(5): 610-624, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38357882

RESUMEN

In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.


Asunto(s)
Calmodulina , Cadenas Pesadas de Miosina , Testículo , Masculino , Animales , Testículo/metabolismo , Deuterio/metabolismo , Secuencia de Aminoácidos , Calmodulina/metabolismo , Unión Proteica , Drosophila/metabolismo , Espectrometría de Masas , Calcio/metabolismo
3.
Biochemistry ; 57(40): 5851-5863, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30199620

RESUMEN

The folding of many globular proteins from the unfolded (U) to the native (N) state appears to be describable by a two-state N ↔ U model, which has led to the general belief that protein folding occurs in a highly cooperative manner. One reason for the widespread belief in "two-state folding" is that protein folding reactions are invariably studied by ensemble averaging probes and not by probes that can distinguish as well as quantify the multiple conformations that may be present. Consequently, how cooperativity is affected by protein stability, protein sequence, and solvent conditions is poorly understood. In this study, hydrogen exchange coupled to mass spectrometry (HX-MS) of the PI3K SH3 domain was carried out in the presence of a stabilizing osmolyte, trimethylamine N-oxide (TMAO). By showing that HX occurs under the EX1 regime even in the presence of 2 M TMAO, we were able to examine the temporal evolution of the populations of the different conformations present together. A strong link between protein folding cooperativity and protein stability is revealed. Increasing stability is accompanied by an increase in the ruggedness of the free energy landscape as well as diminished cooperativity; the number of amide sites simultaneously opening up their structure decreases with an increase in TMAO concentration. A comparison of the effect of TMAO to that of urea on the intrinsic dynamics of the PI3K SH3 domain indicates that TMAO counteracts the effect of urea not only on protein stability but also on protein folding cooperativity.


Asunto(s)
Metilaminas/química , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/química , Pliegue de Proteína , Dominios Homologos src , Estabilidad de Enzimas , Termodinámica
4.
Biochemistry ; 56(31): 4053-4063, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28714672

RESUMEN

To characterize experimentally the ruggedness of the free energy landscape of protein folding is challenging, because the distributed small free energy barriers are usually dominated by one, or a few, large activation free energy barriers. This study delineates changes in the roughness of the free energy landscape by making use of the observation that a decrease in ruggedness is accompanied invariably by an increase in folding cooperativity. Hydrogen exchange (HX) coupled to mass spectrometry was used to detect transient sampling of local energy minima and the global unfolded state on the free energy landscape of the small protein single-chain monellin. Under native conditions, local noncooperative openings result in interconversions between Boltzmann-distributed intermediate states, populated on an extremely rugged "uphill" energy landscape. The cooperativity of these interconversions was increased by selectively destabilizing the native state via mutations, and further by the addition of a chemical denaturant. The perturbation of stability alone resulted in seven backbone amide sites exchanging cooperatively. The size of the cooperatively exchanging and/or unfolding unit did not depend on the extent of protein destabilization. Only upon the addition of a denaturant to a destabilized mutant variant did seven additional backbone amide sites exchange cooperatively. Segmentwise analysis of the HX kinetics of the mutant variants further confirmed that the observed increase in cooperativity was due to the smoothing of the ruggedness of the free energy landscape of folding of the protein by the chemical denaturant.


Asunto(s)
Guanidina/química , Indicadores y Reactivos/química , Menispermaceae/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Sustitución de Aminoácidos , Medición de Intercambio de Deuterio , Transferencia de Energía/efectos de los fármacos , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Termodinámica
5.
Biomolecules ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540792

RESUMEN

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Hidrógeno , Animales , Ratones , Mapeo Epitopo/métodos , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Deuterio/química , Anticuerpos Antivirales , Epítopos/química , Anticuerpos Neutralizantes , Espectrometría de Masas/métodos , Anticuerpos Monoclonales
6.
Clin Cancer Res ; 30(7): 1293-1306, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277241

RESUMEN

PURPOSE: Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN: A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS: We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/µg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 µg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS: L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.


Asunto(s)
Neoplasias Pulmonares , Anticuerpos de Cadena Única , Animales , Humanos , Radioisótopos/química , Circonio/química , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Línea Celular Tumoral
7.
Artículo en Inglés | MEDLINE | ID: mdl-37746528

RESUMEN

Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.

8.
Cell Rep Med ; 4(12): 101305, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38039973

RESUMEN

Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells. One neutralizing NTD mAb, SARS2-57, protects K18-hACE2 mice against SARS-CoV-2 infection in an Fc-dependent manner. Structural analysis demonstrates that SARS2-57 engages an antigenic supersite that is remodeled by deletions common to emerging variants. In neutralization escape studies with SARS2-57, this NTD site accumulates mutations, including a similar deletion, but the addition of an anti-RBD mAb prevents such escape. Thus, our study highlights a common strategy of immune evasion by SARS-CoV-2 variants and how targeting spatially distinct epitopes, including those in the NTD, may limit such escape.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Animales , Ratones , SARS-CoV-2 , Anticuerpos Antivirales , Epítopos/genética , Anticuerpos Monoclonales
9.
mBio ; 13(3): e0051222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420472

RESUMEN

Yellow fever virus (YFV) causes sporadic outbreaks of infection in South America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based on three substrains of 17D are considered some of the most effective vaccines in use, problems with production and distribution have created large populations of unvaccinated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeutics have not been licensed for human use against YFV or any other related flavivirus. Recent advances in monoclonal antibody (mAb) technology have allowed the identification of numerous candidate therapeutics targeting highly pathogenic viruses, including many flaviviruses. Here, we sought to identify a highly neutralizing antibody targeting the YFV envelope (E) protein as a therapeutic candidate. We used human B cell hybridoma technology to isolate mAbs from circulating memory B cells from human YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and recognized at least five major antigenic sites on E. Two mAbs (designated YFV-136 and YFV-121) recognized a shared antigenic site and neutralized the YFV-17D vaccine strain in vitro. YFV-136 also potently inhibited infection by multiple wild-type YFV strains, in part, at a postattachment step in the virus replication cycle. YFV-136 showed therapeutic protection in two animal models of YFV challenge, including hamsters and immunocompromised mice engrafted with human hepatocytes. These studies define features of the antigenic landscape of the YFV E protein recognized by the human B cell response and identify a therapeutic antibody candidate that inhibits infection and disease caused by highly virulent strains of YFV. IMPORTANCE Yellow fever virus (YFV) is a mosquito-borne virus that occasionally causes outbreaks of severe infection and disease in South America and sub-Saharan Africa. There are very effective live-attenuated (weakened) yellow fever virus vaccines, but recent problems with their production and distribution have left many people in affected areas vulnerable. Here, we sought to isolate an antibody targeting the surface of the virus for possible use in the future as a biologic drug to prevent or treat YFV infection. We isolated naturally occurring antibodies from individuals who had received a YFV vaccine. We created antibodies and tested them. We found that the antibody with the most powerful antiviral activity was a beneficial treatment in two different small-animal models of human infection. These studies identified features of the virus that are recognized by the human immune system and generated a therapeutic antibody candidate that inhibits infection caused by highly virulent strains of YFV.


Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Antivirales/uso terapéutico , Cricetinae , Humanos , Ratones , Vacunas Atenuadas , Fiebre Amarilla/prevención & control , Virus de la Fiebre Amarilla
10.
Analyst ; 136(10): 2161-7, 2011 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-21445407

RESUMEN

We report the use of Coumarin 6 and 1,6-diphenyl-1,3,5-hexatriene (DPH) for the identification of protein aggregates for the first time. The two dyes can be used at very low (nanomolar) concentrations and do not interfere with the aggregation process, as is reported for other commonly used fluorescent protein probes. In the presence of protein aggregates, their quantum yields are significantly high. DPH is able to recognize both amorphous and fibrillar aggregates but cannot distinguish between them. Coumarin 6 can distinguish between both types of aggregates. It also exhibits the characteristic sigmoidal curve of amyloid formation, with higher sensitivity for detection of fibrillation than the conventionally used Thioflavin T.


Asunto(s)
Cumarinas/química , Difenilhexatrieno/química , Colorantes Fluorescentes/química , Proteínas/química , Espectrometría de Fluorescencia/métodos , Tiazoles/química , Benzotiazoles , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Proteínas/metabolismo , Teoría Cuántica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
11.
J Exp Med ; 218(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33831142

RESUMEN

Although Powassan virus (POWV) is an emerging tick-transmitted flavivirus that causes severe or fatal neuroinvasive disease in humans, medical countermeasures have not yet been developed. Here, we developed a panel of neutralizing anti-POWV mAbs recognizing six distinct antigenic sites. The most potent of these mAbs bind sites within domain II or III of the envelope (E) protein and inhibit postattachment viral entry steps. A subset of these mAbs cross-react with other flaviviruses. Both POWV type-specific and cross-reactive neutralizing mAbs confer protection in mice against POWV infection when given as prophylaxis or postexposure therapy. Several cross-reactive mAbs mapping to either domain II or III also protect in vivo against heterologous tick-transmitted flaviviruses including Langat and tick-borne encephalitis virus. Our experiments define structural and functional correlates of antibody protection against POWV infection and identify epitopes targeted by broadly neutralizing antibodies with therapeutic potential against multiple tick-borne flaviviruses.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/prevención & control , Encefalitis Transmitida por Garrapatas/virología , Epítopos/inmunología , Células HEK293 , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Ratones Endogámicos C57BL , Mutación , Células Vero , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación
12.
J Phys Chem B ; 121(35): 8263-8275, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28771359

RESUMEN

Protein folding and unfolding reactions invariably appear to be highly cooperative reactions, but the structural and sequence determinants of cooperativity are poorly understood. Importantly, it is not known whether cooperative structural change occurs throughout the protein, or whether some parts change cooperatively and other parts change noncooperatively. In the current study, hydrogen exchange mass spectrometry has been used to show that the mechanism of unfolding of the PI3K SH3 domain is similar in the absence and presence of 5 M urea. The data are well described by a four state N ↔ IN ↔ I2 ↔ U model, in which structural changes occur noncooperatively during the N ↔ IN and IN ↔ I2 transitions, and occur cooperatively during the I2 ↔ U transition. The nSrc-loop and RT-loop, as well as ß strands 4 and 5 undergo noncooperative unfolding, while ß strands 1, 2, and 3 unfold cooperatively in the absence of urea. However, in the presence of 5 M urea, the unfolding of ß strand 4 switches to become cooperative, leading to an increase in the extent of cooperative structural change. The current study highlights the relationship between protein stability and cooperativity, by showing how the extent of cooperativity can be varied, using chemical denaturant to alter protein stability.


Asunto(s)
Fosfatidilinositol 3-Quinasas/química , Desnaturalización Proteica , Pliegue de Proteína , Urea/química , Cinética , Fosfatidilinositol 3-Quinasas/metabolismo , Conformación Proteica , Estabilidad Proteica
13.
FEBS J ; 278(10): 1688-98, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21410644

RESUMEN

The neurotransmitter dopamine has been shown to inhibit fibrillation of α-synuclein by promoting the formation of nonamyloidogenic oligomers. Fibrillation of α-synuclein is accelerated in the presence of pesticides and the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The aim of this study was to determine whether dopamine continues to have an adverse effect on the fibrillation of α-synuclein in the presence of MPTP and its metabolite 1-methyl-4-phenylpyridinum ion (MPP(+) ). We also attempted to answer the ambiguous question of whether conversion of MPTP to MPP(+) is required for the fibrillation of α-synuclein. For this, α-synuclein was incubated in the presence of MPTP and MPP(+) along with dopamine. The fibrillation of α-synuclein was monitored by Thioflavin T fluorescence and immunoblotting. The morphology of the aggregates formed was observed using scanning electron microscopy. The concentrations of the neurotoxin and its metabolite were estimated by reverse phase HPLC. We found definitive evidence that the conversion of MPTP to MPP(+) is not required for aggregation of α-synuclein. MPP(+) was found to accelerate the rate of α-synuclein aggregation even in the absence of components of mitochondrial complex I. In contrast to the effect of dopamine on the aggregation of α-synuclein alone, in the presence of MPTP or MPP(+) , the aggregates formed are Thioflavin T-positive and amyloidogenic. Thus, the effect of dopamine on the nature of aggregates formed in case of α-synuclein alone and in the presence of MPTP/MPP(+) is different.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Dopamina/farmacología , alfa-Sinucleína/química , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Humanos , Estructura Cuaternaria de Proteína , alfa-Sinucleína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA