Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 138(12): 711-723, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38804865

RESUMEN

Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Endotelina-1 , Desarrollo de Músculos , Músculo Esquelético , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Desarrollo de Músculos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Endotelina-1/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular , Ratones , Masculino , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Mioblastos/efectos de los fármacos , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Atrofia Muscular/metabolismo , Atrofia Muscular/patología
2.
Aging Cell ; 13(4): 755-64, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24889782

RESUMEN

Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.


Asunto(s)
Caenorhabditis elegans/enzimología , Drosophila melanogaster/enzimología , Lipoproteína Lipasa/metabolismo , Longevidad , Estrés Oxidativo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adaptación Fisiológica , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Epistasis Genética , Técnicas de Silenciamiento del Gen , Mutación/genética , Fosforilación , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA