Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Probes ; 72: 101938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863123

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors that can be highly aggressive. Despite advances in the exploration of its underlying molecular biology, the clinical outcome for advanced ccRCC is still unsatisfied. Recently, more attention was paid to the functions of Kinesin family member 2C (KIF2C) in cancer progression, while the specific function of KIF2C in ccRCC has not been sufficiently elucidated. The present study aims to investigate the role of KIF2C in the progression of ccRCC and reveal potential mechanisms. METHODS: Expression of KIF2C in ccRCC tissues and adjacent normal tissue was compared and the association of KIF2C expression level with tumor grade, stage, and metastasis were analyzed using online web tool. Kaplan-Meier survival was performed to detect the association of KIF2C expression and patient' prognosis. Stably cell lines with KIF2C knockdown or overexpression were constructed by lentivirus infection. CCK-8, colony formation, scratch healing, and transwell invasion assays were carried out to explore the effect of KIF2C knockdown or overexpression on the proliferation, migration, and invasion of ccRCC cells. Gene set enrichment analysis (GSEA) was conducted to reveal signaling pathways associated with KIF2C expression. The effect of KIF2C on JAK2/STAT3 signaling pathway were explored by western blot assay. RESULTS: KIF2C expression was significantly upregulated in ccRCC tissues and was higher with the increase of tumor grade, stage, and metastasis. Higher expression of KIF2C was correlated with worse overall survival and diseases free survival in ccRCC patients. Silence of KIF2C inhibited proliferation, migration, and invasion in ccRCC cells. Conversely, overexpression of KIF2C had the opposite effect. GSEA results showed that JAK/STAT signaling pathway was markedly enriched in KIF2Chigh group. Pearson' correlation revealed that KIF2C expression was significantly associated with genes in JAK2/STAT3 signaling. Western blot results showed that KIF2C knockdown decreased protein expression of p-JAK2 and p-STAT3, and KIF2C overexpression increased the phosphorylation of JAK2 and STAT3. AG490, a JAK2/STAT3 signaling inhibitor, could partly impair the tumor-promoting effects of KIF2C in ccRCC. CONCLUSION: KIF2C expression was significantly upregulated in ccRCC and correlated with tumor grade, stage, metastasis, and patients' prognosis. KIF2C promoted ccRCC progression via activating JAK2/STAT3 signaling pathway, and KIF2C might be a novel target in ccRCC therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias Renales/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , Cinesinas/farmacología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
2.
World J Microbiol Biotechnol ; 38(4): 71, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258706

RESUMEN

The present study aimed to evaluate transcriptional activator-like effector (TALE) genes in 86 Xanthomonas oryzae pv. oryzicola strains collected from 8 rice-growing regions in Yunnan, and to examine the relationship between TALE genotypes and virulence in 6 differential rice lines. Besides, the geographical areas, distribution of these genotypes were studied in detail. Genetic diversity was analyzed through the number and size of putative TALE genes based on TALE gene avrXa3 as a probe. We found that X. oryzae pv. oryzicola strains consist of variable number (13-27) of avrXa3-hybridizing fragments (putative TALE genes). Test strains were classified into 8 genotypes (G1-G8) with major genotypes G3 and G7 widely distributed in Yunnan. Pathogenicity of X. oryzae pv. oryzicola was evaluated by inoculating 6 differential rice lines with a single resistance gene into 9 pathotypes clusters (I-IX), the dominant Genotypes G3 and G7 consist of pathotypes I, II, and IV. Furthermore, we also detected the known TALE target genes expression in susceptible rice cultivar (cv. nipponbare) after inoculating 8 genotypes-representative X. oryzae pv. oryzicola strain. Correlation between the numbers of putative TALE genes of X. oryzae pv. oryzicola and relevant target genes in nipponbare confirmed up-regulation. Altogether, this study has given insights into the population structure of X. oryzae pv. oryzicola that may inform strategies to control BLS in rice.


Asunto(s)
Oryza , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , China , ADN Bacteriano/genética , Oryza/genética , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Efectores Tipo Activadores de la Transcripción/metabolismo , Virulencia/genética , Xanthomonas/genética
3.
Prep Biochem Biotechnol ; 51(10): 1008-1017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33656401

RESUMEN

Fermentation products of Lysobacter antibioticus 13-6 have antagonistic activity against devastating phytopathogenic bacerium Xanthomonas oryzae pv. oryzicola. The production of Lysobacter antibioticus 13-6 secondary metabolites was increased by optimizing the fermentation medium; using a single-factor screening test, Plackett-Burman Design, and Box-Behnken Design. The medium's final formulation for active secondary metabolites high-yield included peptone 5 g/L, glucose 4.73 g/L, MgSO4·7H2O 2.33 g/L, and K2HPO4 2.21 g/L. We compared phenazine-1-carboxylic acid (PCA) contents of L. antibioticus 13-6 in the initial and optimized mediums through HPLC. It was found PCA contents of the optimized medium are two folds more than in the initial medium. We also detected the relative expression of five phenazine genes of L. antibioticus 13-6 via RT-qPCR, and it was found that genes: phzB, C, S, and NO1 have more significant expression compared with the initial medium, while gene phzD has found just significant. Further, we revealed that the optimal fermentation conditions for secondary metabolites were: fermentation time 60 hours, shaking speed 160 rpm, inoculum size 3%, and the initial pH = 7.0. In the end, it was determined that the antimicrobial activity and quality of L. antibioticus 13-6 secondary metabolites were increased by about 41.75% and 2-times, respectively, after the optimization of the fermentation medium.


Asunto(s)
Medios de Cultivo/metabolismo , Lysobacter/metabolismo , Metabolismo Secundario , Reactores Biológicos , Medios de Cultivo/química , Fermentación , Peptonas/metabolismo , Fenazinas/metabolismo
4.
Phytopathology ; 110(2): 278-286, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31613175

RESUMEN

A characteristic feature of phytopathogenic Xanthomonas bacteria is the production of yellow membrane-bound pigments called xanthomonadins. Previous studies showed that 3-hydroxybenzoic acid (3-HBA) was a xanthomonadin biosynthetic intermediate and also, that it had a signaling role. The question of whether the structural isomers 4-HBA and 2-HBA (salicylic acid) have any role in xanthomonadin biosynthesis remained unclear. In this study, we have selectively eliminated 3-HBA, 4-HBA, or the production of both by expression of the mhb, pobA, and pchAB gene clusters in the Xanthomonas campestris pv. campestris strain XC1. The resulting strains were different in pigmentation, virulence factor production, and virulence. These results suggest that both 3-HBA and 4-HBA are involved in xanthomonadin biosynthesis. When both 3-HBA and 4-HBA are present, X. campestris pv. campestris prefers 3-HBA for Xanthomonadin-A biosynthesis; the 3-HBA-derived Xanthomonadin-A was predominant over the 4-HBA-derived xanthomonadin in the wild-type strain XC1. If 3-HBA is not present, then 4-HBA is used for biosynthesis of a structurally uncharacterized Xanthomonadin-B. Salicylic acid had no effect on xanthomonadin biosynthesis. Interference with 3-HBA and 4-HBA biosynthesis also affected X. campestris pv. campestris virulence factor production and reduced virulence in cabbage and Chinese radish. These findings add to our understanding of xanthomonadin biosynthetic mechanisms and further help to elucidate the biological roles of xanthomonadins in X. campestris pv. campestris adaptation and virulence in host plants.


Asunto(s)
Hidroxibenzoatos , Parabenos , Pigmentos Biológicos , Xanthomonas campestris , Hidroxibenzoatos/metabolismo , Parabenos/metabolismo , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/genética , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidad
5.
Indian J Microbiol ; 58(3): 353-359, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30013280

RESUMEN

The effect of crude extract (Ce), seed coating agent (SCA) and whole bacterial broth culture (WBC) of Lysobacter strains was evaluated against the causal agent of clubroot formation in Cruciferous vegetables. The ability of four Lysobacter strains (L. antibioticus 6-B-1, L. antibioticus 6-T-4, L. antibioticus 13-B-1 and L. capsici ZST1-2) inhibited Plasmodiophora brassicae of resting spores and disease. Application of WBC of four Lysobacter strains inhibited clubroot disease, indicating that the disease suppression was due to antifungal compounds produced by the biocontrol bacterium in the culture. Development of clubroot on Chinese cabbage was inhibited when the WBC and SCA were applied before P. brassicae inoculation. Crude extract (Ce) of culture filtrate was effective in arresting the germination of resting spores of P. brassicae on slides. However, Lysobacter strains differed in their biocontrol effects, the strain L. capsci ZST1-2 recorded a high level of disease limiting effect.

7.
Mol Plant Microbe Interact ; 29(3): 220-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26667598

RESUMEN

Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Percepción de Quorum/fisiología , Xanthomonas/metabolismo , Xanthomonas/fisiología , Proteínas Bacterianas/genética , Eliminación de Gen , Percepción de Quorum/genética , Transducción de Señal/fisiología , Virulencia , Xanthomonas/clasificación , Xanthomonas/genética
8.
Mol Plant Microbe Interact ; 27(9): 983-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25105804

RESUMEN

The closely related plant pathogens Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB), respectively, in rice. Unlike X. oryzae pv. oryzae, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the X. oryzae pv. oryzicola-rice pathosystem, though both X. oryzae pv. oryzicola and X. oryzae pv. oryzae possess transcriptional activator-like effectors (TALE), which are known to modulate R or S genes in rice. In this report, avrXa7, avrXa10, and avrXa27 from X. oryzae pv. oryzae were transferred into YNB0-17 and RS105, hypovirulent and hypervirulent strains, respectively, of X. oryzae pv. oryzicola. When YNB0-17 containing avrXa7, avrXa10, or avrXa27 was inoculated to rice, hypersensitive responses (HR) were elicited in rice cultivars containing the R genes Xa7, Xa10, and Xa27, respectively. By contrast, RS105 expressing avrXa27 elicited an HR in a rice cultivar containing Xa27 but the expression of avrXa7 and avrXa10 in RS105 did not result in HR in rice cultivars containing Xa7 and Xa10, correspondingly. Southern blot analysis demonstrated that YNB0-17 possesses only approximately nine putative tale genes, whereas the hypervirulent RS105 contains at least 20. Although YNB0-17 contains an intact type III secretion system (T3SS), its genome is lacking the T3SS effector genes avrRxo1 and xopO, which are present in RS105. The introduction of avrRxo1 and xopO into YNB0-17 did not suppress avrXa7- or avrXa10-triggered immunity in rice. However, the transference of individual tale genes from RS105 into YNB0-17 led to the identification of tal6 and tal11a that suppressed avrXa7-Xa7-mediated defense. Thus, YNB0-17 may be a useful recipient for discovering such suppressors. This is the first report that co-evolutionally generated tale genes in X. oryzae pv. oryzicola suppress gene-for-gene defense against BLB, which may explain the lack of BLS-resistant cultivars.


Asunto(s)
Proteínas Bacterianas/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Transactivadores/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , ADN Bacteriano/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Transactivadores/metabolismo , Efectores Tipo Activadores de la Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia , Xanthomonas/genética , Xanthomonas/aislamiento & purificación , Xanthomonas/fisiología
9.
BMC Microbiol ; 14: 4, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24383424

RESUMEN

BACKGROUND: Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. RESULTS: M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. CONCLUSIONS: MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.


Asunto(s)
Desecación , Metarhizium/crecimiento & desarrollo , Tenebrio/microbiología , Tenebrio/fisiología , Animales , China , Larva/microbiología , Larva/fisiología , Metarhizium/aislamiento & purificación , Control Biológico de Vectores , Microbiología del Suelo , Análisis de Supervivencia
10.
Phytopathology ; 104(7): 672-82, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24423401

RESUMEN

Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak (BLS), a devastating disease of rice in Asia countries. X. oryzae pv. oryzicola utilizes repertoires of transcriptional activator-like effectors (TALEs) to manipulate host resistance or susceptibility; thus, TALEs can determine the outcome of BLS. In this report, we studied genetic diversity in putative tale genes of 65 X. oryzae pv. oryzicola strains that originated from nine provinces of southern China. Genomic DNAs from the 65 strains were digested with BamHI and hybridized with an internal fragment of avrXa3, a tale gene originating from the related pathogen, X. oryzae pv. oryzae, which causes bacterial leaf blight (BLB). Southern blot analysis indicated that the strains contained a variable number (9 to 22) of avrXa3-hybridizing fragments (e.g., putative tale genes). Based on the number and size of hybridizing bands, strains were classified into 14 genotypes (designated 1 to 14), and genotypes 3 and 10 represented 29.23 and 24.64% of the total, respectively. A high molecular weight BamHI fragment (HMWB; ≈6.0 kb) was present in 12 of the 14 genotypes, and sequence analysis of the HMWB revealed the presence of a C-terminally truncated tale, an insertion element related to IS1403, and genes encoding phosphoglycerate mutase and endonuclease V. Primers were developed from the 6.0-kb HMWB fragment and showed potential in genotyping X. oryzae pv. oryzicola strains by polymerase chain reaction. Virulence of X. oryzae pv. oryzicola strains was assessed on 23 rice cultivars containing different resistance genes for BLB. The X. oryzae pv. oryzicola strains could be grouped into 14 pathotypes (I to XIV), and the grouping of strains was almost identical to the categories determined by genotypic analysis. In general, strains containing higher numbers of putative tale genes were more virulent on rice than strains containing fewer tales. The results also indicate that there are no gene-for-gene relationships between the tested rice lines and X. oryzae pv. oryzicola strains. To our knowledge, this is the first description of genetic diversity of X. oryzae pv. oryzicola strains based on tale gene analysis.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Secuencia de Bases , China , Análisis por Conglomerados , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Epistasis Genética , Genotipo , Datos de Secuencia Molecular , Mutación , Hibridación de Ácido Nucleico , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Virulencia , Xanthomonas/clasificación , Xanthomonas/aislamiento & purificación , Xanthomonas/patogenicidad
11.
Curr Med Imaging ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178675

RESUMEN

Dual-energy computed tomography (DECT) applies two energy spectra distributions to collect raw data based on traditional CT imaging. The application of hepatobiliary imaging, has the advantages of optimizing the scanning scheme, improving the imaging quality, highlighting the disease characterization, and increasing the detection rate of lesions. In order to summarize the clinical application value of DECT in hepatobiliary diseases, we searched the technical principles of DECT and its existing studies, case reports, and clinical guidelines in hepatobiliary imaging from 2010 to 2023 (especially in the past 5 years) through PubMed and CNKI, focusing on the clinical application of DECT in hepatobiliary diseases, including liver tumors, diffuse liver lesions, and biliary system lesions. The first part of this article briefly describes the basic concept and technical advantages of DECT. The following will be reviewed:the detection of lesions, diagnosis and differential diagnosis of lesions, hepatic steatosis, quantitative analysis of liver iron, and analyze the advantages and disadvantages of DECT in hepatobiliary imaging. Finally, the contents of this paper are summarized and the development prospect of DECT in hepatobiliary imaging is prospected.

12.
Life (Basel) ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541611

RESUMEN

Leaf-blight disease caused by the Fusarium oxysporum is an emerging problem in Dendrobium chrysotoxum production in China. Symptoms of leaf blight were observed on seedlings of D. chrysotoxum cultivated in a nursery in Ruili City, Yunnan Province, China. In this study, we isolated the Fusarium sp. associated with leaf-blight disease of D. chrysotoxum from the diseased seedlings. A pathogenicity test was performed to fulfill Koch's postulates to confirm the pathogenicity of isolated strains and identified using morphological and molecular techniques. The results revealed that all four isolated Fusarium sp. isolates (DHRL-01~04) produced typical blight symptoms followed by marginal necrosis of leaves on the D. chrysotoxum plants. On the PDA medium, the fungal colony appeared as a white to purplish color with cottony mycelium growth. Microconidia are oval-shaped, whereas macroconidia are sickle-shaped, tapering at both ends with 2-4 septations. The phylogenetic trees were construed based on internal transcribed spacer (ITS), translation elongation factor (EF-1α), and RNA polymerase subunit genes RPB1 and RPB2 genes, respectively, and blasted against the NCBI database for species confirmation. Based on the NCBI database's blast results, the isolates showed that more than 99% identify with Fusarium oxysporum. To our knowledge, this is the first comprehensive report on the identification of Fusarium oxysporum as the causal agent of Dendrobium chrysotoxum leaf blight in Yunnan Province, China, based on morphological and molecular characteristics.

13.
Front Microbiol ; 15: 1376579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686113

RESUMEN

Background: Plasmodiophora brassicae is an ever-increasing threat to cruciferous crop production worldwide. Aims and methods: This study investigated the impact of pre-soil fumigation with ammonium bicarbonate (N) and lime (NB) to manage clubroot disease in Chinese cabbage through 16S rRNA gene amplification sequencing. Results: We found that soil fumigation with N and NB suppressed disease incidence by reducing the soil acidity and population of P. brassicae in the rhizosphere. Minimum disease incidence and maximum relative control effect of about 74.68 and 66.28% were achieved in greenhouse and field experiments, respectively, under the combined application of ammonium bicarbonate and lime (LNB) as compared with N, NB, and control (GZ). Microbial diversity analysis through Miseq sequencing proved that pre-soil fumigation with N, NB, and LNB clearly manipulated rhizosphere microbial community composition and changed the diversity and structure of rhizosphere microbes compared with GZ. Bacterial phyla such as Proteobacteria, Bacteriodetes, and Acidobacteria and fungal phyla including Olpidiomycota and Ascomycota were most dominant in the rhizosphere of Chinese cabbage plants. Soil fumigation with N and NB significantly reduced the abundance of clubroot pathogen at genus (Plasmodiophora) level compared with GZ, while decreased further under combined application LNB. Microbial co-occurrence network analysis showed a highly connected and complex network and less competition for resources among microbes under combined application LNB. Conclusion: We conclude that for environmentally friendly and sustainable agriculture, soil fumigation with combined ammonium bicarbonate and lime plays a crucial role in mitigating Chinese cabbage clubroot disease by alleviating soil pH, reducing pathogen population, and manipulating the rhizosphere microbiome.

14.
Medicine (Baltimore) ; 102(47): e36196, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38013345

RESUMEN

Bone and soft tissue tumors are diverse, accompanying by complex histological components and significantly divergent biological behaviors. It is a challenge to address the demand for qualitative imaging as traditional imaging is restricted to the detection of anatomical structures and aberrant signals. With the improvement of digitalization in hospitals and medical centers, the introduction of electronic medical records and easier access to large amounts of information coupled with the improved computational power, traditional medicine has evolved into the combination of human brain, minimal data, and artificial intelligence. Scholars are committed to mining deeper levels of imaging data, and radiomics is worthy of promotion. Radiomics extracts subvisual quantitative features, analyzes them based on medical images, and quantifies tumor heterogeneity by outlining the region of interest and modeling. Two observers separately examined PubMed, Web of Science and CNKI to find existing studies, case reports, and clinical guidelines about research status and progress of radiomics in bone and soft tissue tumors from January 2010 to February 2023. When evaluating the literature, factors such as patient age, medical history, and severity of the condition will be considered. This narrative review summarizes the application and progress of radiomics in bone and soft tissue tumors.


Asunto(s)
Inteligencia Artificial , Neoplasias de los Tejidos Blandos , Humanos , Diagnóstico por Imagen , Neoplasias de los Tejidos Blandos/diagnóstico por imagen
15.
Front Microbiol ; 14: 1251211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779709

RESUMEN

Chryseobacterium indologenes is one of the primary causative agents of root rot of Panax notoginseng, which significantly affected plant growth and caused economic losses. With the increasing incidence of antibiotic-resistant bacterial phytopathogens, phage therapy has been garnered renewed attention in treating pathogenic bacteria. However, the therapeutic potential of phage therapy on root rot of P. notoginseng has not been evaluated. In this study, we isolated a novel lytic phage MA9V-1 infecting C. indologenes MA9 from sewage and monitored the formation of clear and round plaques with a diameter of approximately 0.5-1.5 mm. Phage MA9V-1 exhibited rapid absorption (>75% in 8 min), a latency period of 20 min, and a burst size of 10 particles per cell. Transmission electron microscopy indicated that the phage MA9V-1 is a new myovirus hosting C. indologenes MA9. Sequencing of phage genomes revealed that phage MA9V-1 contained a linear double-stranded DNA genome of 213,507 bp with 263 predicted open reading frames, including phage structure, host lysing, and DNA polymerase/helicase but no genes of tRNA, virulence, and antibiotic resistance. Our proteomic tree and genomic analysis revealed that phage MA9V-1 shares identity with Sphingomonas phage PAU and Tenacibaculum phage PTm1; however, they also showed apparent differences. Further systemic evaluation using phage therapy experiments on P. notoginseng suggested that phage MA9V-1 can be a potential candidate for effectively controlling C. indologenes MA9 infection. Thus, we have presented a novel approach to solving root rot in P. notoginseng.

16.
Front Plant Sci ; 14: 1267132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192696

RESUMEN

Background: Angular leaf spot disease caused by plant pathogenic bacterium Xanthomonas fragariae seriously threatens strawberry crop production globally. Methods: In this study, we sequenced the whole genome of X. fragariae YM2, isolated from Yunnan Province, China. In addition, we performed a comparative genome analysis of X. fragariae YM2 with two existing strains of X. fragariae YL19 and SHQP01 isolated from Liaoning and Shanghai, respectively. Results: The results of Nanopore sequencing showed that X. fragariae YM2 comprises one single chromosome with a contig size of 4,263,697 bp, one plasmid contig size of 0.39 Mb, a GC content ratio of 62.27%, and 3,958 predicted coding genes. The genome of YM2 comprises gum, hrp, rpf, and xps gene clusters and lipopolysaccharide (LPS), which are typical virulence factors in Xanthomonas species. By performing a comparative genomic analysis between X. fragariae strains YM2, YL19, and SHQP01, we found that strain YM2 is similar to YL19 and SHQP01 regarding genome size and GC contents. However, there are minor differences in the composition of major virulence factors and homologous gene clusters. Furthermore, the results of collinearity analysis demonstrated that YM2 has lower similarity and longer evolutionary distance with YL19 and SHQP01, but YL19 is more closely related to SHQP01. Conclusions: The availability of this high-quality genetic resource will serve as a basic tool for investigating the biology, molecular pathogenesis, and virulence of X. fragariae YM2. In addition, unraveling the potential vulnerabilities in its genetic makeup will aid in developing more effective disease suppression control measures.

17.
Biology (Basel) ; 11(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35741438

RESUMEN

Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production, which results in extensive yield losses. At present, clubroot control mainly depends upon pesticides, which provoke food-safety concerns, and the application of sole biocontrol agents cannot successfully control the disease. In this study, we investigated the effect of Bacillus cereus BT-23, Lysobacter antibioticus 13-6, and Lysobacter capsici ZST1-2 as sole strains, intra-/inter-genus co-culture, and microbial consortia on clubroot disease, plant growth, and rhizosphere bacterial diversity in a field experiment. The microbial consortia efficiently controlled the incidence of clubroot disease, with a biocontrol effect of about 65.78%, by decreasing the soil acidity and enhancing the yield (17,662.49 kg/acre). The high-throughput sequencing results demonstrated that the phyla Proteobacteria and Bacteroidetes were present in high relative abundance in the rhizosphere soil of the Chinese cabbage. Furthermore, Firmicutes was found as a unique phylum in the rhizosphere soil of CK-H and T1-T7, except for CK-D. The application of microbial consortia recovers the imbalance in indigenous microbial communities. Therefore, we conclude that microbial consortia can reduce the clubroot incidence in Chinese cabbage by decreasing the soil acidity and altering the diversity and structure of rhizosphere bacterial communities. This study highlights the potential of microbial consortia as an engineering tool to control devastating soilborne diseases in commercial crops.

18.
J Microbiol ; 60(5): 496-510, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35362894

RESUMEN

Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.


Asunto(s)
Oryza , Xanthomonas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lysobacter , Oryza/microbiología , Fenazinas/metabolismo , Fenazinas/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
19.
World J Clin Cases ; 10(27): 9845-9850, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186202

RESUMEN

BACKGROUND: Coronavirus disease-2019 (COVID-19) is a highly pathogenic respiratory disease that mainly affects adults and elderly patients. Yet, over the past three years, there were an increasing number of infected children; however, only a few cases of infants with reverse-transcription polymerase chain reaction (RT-PCR)-confirmed COVID-19 and chest computed tomography (CT) normal have been reported. Herein, we reported a single case of a patient (a 3-mo-old girl) with COVID-19, including her clinical and imaging findings. CASE SUMMARY: The patient with fever, diarrhea came to fever clinic. Her chest CT was normal. The patient was treated accordingly, the fever disappeared while diarrhea persisted, what's more, RT-PCR testing of nasopharyngeal swab showed positive results; thus, the patient was admitted to the pediatric department on the 5th day of onset. The child was given systematic treatment, and all her symptoms significantly improved. Consecutive RT-PCR tests were negative after examining the pharyngeal swabs but positive after analyzing anal swabs. She was discharged on the 31st day of hospitalization. CONCLUSION: This report provides useful references for treating infantile COVID-19 cases with diarrhea or other non-respiratory symptoms and normal chest CT scan. Given the persistent positive RT-PCR results of anal swabs, the possibility of fecal-oral transmission of COVID-19 should be considered.

20.
Front Microbiol ; 13: 845310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495684

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of flue-cured tobacco production which poses significant yield losses all around the world. In this study, we evaluated the rhizosphere microbiome of healthy and bacterial wilt-infected (diseased) flue-cured tobacco plants through amplification of V3-V4 and ITS1-5f variable regions of 16S and internal transcribed spacer (ITS) rRNA. The study was based on the location (Qujing, Shilin, and Wenshan), plant components (rhizosphere soil and roots), and sample types (healthy and diseased) to assess the diversity of bacterial and fungal communities. Bacterial and fungal communities present in roots primarily emanated from rhizosphere soil. Healthy flue-cured tobacco plants exhibit high microbial diversity compared to diseased plants. Among three variables, plant components significantly influence the diversity of microbial communities, whereas rhizosphere soil harbors higher microbial diversity than roots. Bacterial phyla Cyanobacteria and Proteobacteria were found in high relative abundance in roots and rhizosphere soil samples, respectively. As far as fungi is concerned, a high relative abundance of Ascomycota and Basidiomycota was found in both rhizosphere soil and root. Bacterial genera such as Bacillus, Bradyrhizobium, Ensifer, Neorhizobium, and Lysobacter related to plant growth promotion and disease suppressing abilities were dominant than fungal genera. Analysis of relative abundance at specie-level revealed that most fungal species are pathogenic to flue-cured tobacco and could provide a conducive environment for wilt infection. In conclusion, R. solanacearum significantly influences the microbial diversity of flue-cured tobacco plants and negatively affects the bacterial community composition. Altogether, our study demonstrates the complexity of bacterial and fungal communities that possibly interact with each other (microbe-microbe) and host (host-microbe). This cross-talk could be helpful for healthy flue-cured tobacco plant growth and to induce resistance against bacterial wilt disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA