Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542664

RESUMEN

Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final tribocharge pattern by separately applying two models, namely cohesive zone failure and cumulative fracture energy, as a function of the mold nanotexture's aspect ratio. These models deepen our understanding of the triboelectrification phenomenon.

2.
Sci Rep ; 13(1): 13649, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608050

RESUMEN

Nature finds a way to leverage nanotextures to achieve desired functions. Recent advances in nanotechnologies endow fascinating multi-functionalities to nanotextures by modulating the nanopixel's height. But nanoscale height control is a daunting task involving chemical and/or physical processes. As a facile, cost-effective, and potentially scalable remedy, the nanoscale capillary force lithography (CFL) receives notable attention. The key enabler is optical pre-modification of photopolymer's characteristics via ultraviolet (UV) exposure. Still, the underlying physics of the nanoscale CFL is not well understood, and unexplained phenomena such as the "forbidden gap" in the nano capillary rise (unreachable height) abound. Due to the lack of large data, small length scales, and the absence of first principles, direct adoptions of machine learning or analytical approaches have been difficult. This paper proposes a hybrid intelligence approach in which both artificial and human intelligence coherently work together to unravel the hidden rules with small data. Our results show promising performance in identifying transparent, physics-retained rules of air diffusivity, dynamic viscosity, and surface tension, which collectively appear to explain the forbidden gap in the nanoscale CFL. This paper promotes synergistic collaborations of humans and AI for advancing nanotechnology and beyond.

3.
Micromachines (Basel) ; 13(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557482

RESUMEN

Nanolenses are gaining importance in nanotechnology, but their challenging fabrication is thwarting their wider adoption. Of particular challenge is facile control of the lens' curvature. In this work, we demonstrate a new nanoimprinting technique capable of realizing polymeric nanolenses in which the nanolens' curvature is optically controlled by the ultraviolet (UV) dose at the pre-curing step. Our results reveal a regime in which the nanolens' height changes linearly with the UV dose. Computational modeling further uncovers that the polymer undergoes highly nonlinear dynamics during the UV-controlled nanoimprinting process. Both the technique and the process model will greatly advance nanoscale science and manufacturing technology.

4.
Micromachines (Basel) ; 12(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34945310

RESUMEN

Replica molding-based triboelectrification has emerged as a new and facile technique to generate nanopatterned tribocharge on elastomer surfaces. The "mechano-triboelectric charging model" has been developed to explain the mechanism of the charge formation and patterning process. However, this model has not been validated to cover the full variety of nanotexture shapes. Moreover, the experimental estimation of the tribocharge's surface density is still challenging due to the thick and insulating nature of the elastomeric substrate. In this work, we perform experiments in combination with numerical analysis to complete the mechano-triboelectrification charging model. By utilizing Kelvin probe force microscopy (KPFM) and finite element analysis, we reveal that the mechano-triboelectric charging model works for replica molding of both recessed and protruding nanotextures. In addition, by combining KPFM with numerical electrostatic modeling, we improve the accuracy of the surface charge density estimation and cross-calibrate the result against that of electrostatic force microscopy. Overall, the regions which underwent strong interfacial friction during the replica molding exhibited high surface potential and charge density, while those suffering from weak interfacial friction exhibited low values on both. These multi-physical approaches provide useful and important tools for comprehensive analysis of triboelectrification and generation of nanopatterned tribocharge. The results will widen our fundamental understanding of nanoscale triboelectricity and advance the nanopatterned charge generation process for future applications.

5.
ACS Nano ; 14(5): 6058-6066, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32336089

RESUMEN

Nanotextures play increasingly important roles in nanotechnology. Recent studies revealed that their functionalities can be further enhanced by spatially modulating the height of their nanoscale pixels. Realizing the concept, however, is very challenging as it requires "grayscale" printing of the nanopixels in which their height is controlled within a few nanometers as a micrometric function of position. This work demonstrates such a high vertical and lateral resolution grayscale printing of polymeric nanopixels. We realize the height modulation by exploiting the discovery that the capillary rise of certain photopolymers can be optically controlled to stop at a predetermined height with sub-10-nm accuracy. Microscale spatial patterning of the control light directly extends the height modulation into a two-dimensionally patterned, grayscale nanopixel printing. Its utility is verified through readily reconfigurable, maskless printing of grayscale nanopixel arrays in dielectric and metallo-dielectric forms. This work also reveals the highly nonlinear and unstable nature of the polymeric nanocapillary effect, expanding its understanding and application scope.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA